

Effective field theories in a finite volume

Akaki Rusetsky, University of Bonn

V. Bernard, M. Lage, U.-G. Meißner and AR, arXiv:1010.6018 D. Hoja, U.-G. Meißner and AR, arXiv:1001.1641

Strong interactions: from methods to structures, 14 February 2011, Bad-Honnef

Plan

- Introduction: effective field theories in a finite volume
- Lüscher equation in a moving frame
- The nature of scalar mesons:
 - Identification of the hadronic molecules on the lattice
 - Twisted boundary conditions and the generalization of Lüscher formula for multi-channel scattering
 - Strangeness content of the exotic states
- Infinite-volume limit of the matrix elements on the lattice
- Conclusions, outlook

Goals:

- Extracting scattering S-matrix elements from lattice simulations:
 - Elastic scattering (Lüscher)
 - Inelastic scattering: phase shifts, inelasticities, scattering lengths
 - Resonance parameters
 - The nature of the resonances: $q\bar{q}$ states, hadronic molecules, tetraquarks, etc
- Extracting matrix elements of external currents:
 - Magnetic moments, axial charges, etc
 - Electromagnetic formfactors

Infinite-volume limit?

→ Use effective field theory methods!

Lüscher approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237

Lattice calculations are always done in a finite volume

- ⇒ The spectrum is discrete
- ⇒ scattering? resonances?

Energy spectrum at: $R_{\text{int}}^{-1}L \simeq ML \gg 1$, $a \to 0$

- Momenta are small: $p \simeq 2\pi/L \ll M \implies \text{NR EFT}$
- Finite-volume corrections to the energy levels are only power-suppressed in *L*
- Studying the dependence of the energy levels on *L* gives the scattering phase in the infinite volume ⇒ Resonances

Example: Lüscher equation the moving frame

Covariant non-relativistic EFT in the infinite volume, no spin: G. Colangelo, J. Gasser, B. Kubis and AR, PLB 638 (2006) 187

$$\mathcal{L} = \Psi^{\dagger} 2 W_N (i \partial_t - W_N) \Psi + \Phi^{\dagger} 2 W_\pi (i \partial_t - W_\pi) \Phi + C_0 \Psi^{\dagger} \Phi^{\dagger} \Phi \Psi + \cdots$$

$$W_N = \sqrt{M_N^2 - \Delta}, \qquad W_\pi = \sqrt{M_\pi^2 - \Delta}$$

Lippmann-Schwinger equation in an arbitrary moving frame:

$$T(p_1p_2;q_1q_2) = V(p_1p_2;q_1q_2) + \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{V(p_1p_2;k_1k_2)T(k_1k_2;q_1q_2)}{4w_Nw_\pi(w_N+w_\pi-q_1^0-q_2^0)}$$

$$\mathbf{k}_N = \eta \mathbf{P} + \mathbf{k}, \quad \mathbf{k}_\pi = (1 - \eta) \mathbf{P} + \mathbf{k}, \qquad \eta = \frac{1}{2} \left(1 + \frac{m_N^2 - M_\pi^2}{s} \right)$$

Choice of the interaction Lagrangian: V depends on the Lorentz-invariant variables $p_i \cdot p_j$

Partial-wave expansion: infinite volume

LS equation for the on-shell partial-wave amplitudes:

$$T_L(s) = V_L(s) + V_L(s) G(s) V_L(s)$$
$$V_L(s) = (s - s_t)^L \left(\sum_n C_{nL} (s - s_t)^n \right), \quad s_t = (m_N + M_\pi)^2$$
$$\int d^d \mathbf{k} \qquad 1 \qquad in(s)$$

$$G(s) = \lim_{d \to 3} \int \frac{d^{-\mathbf{k}}}{(2\pi)^d} \frac{1}{4w_N w_\pi (w_N + w_\pi - q_1^0 - q_2^0)} = \frac{\eta (s)}{8\pi\sqrt{s}}$$

Matching:

 C_{nL} \Leftrightarrow effective-range expansion parameters (scattering length, effective radius, etc)

Non-relativistic EFT in a finite volume

S.R. Beane et al., NPA 747 (2005) 55 (no spin, CM frame)

Finite volume:
$$\int \frac{d^3 \mathbf{k}}{(2\pi)^3} (\cdots) \to \frac{1}{L^3} \sum_{\mathbf{k}} (\cdots), \quad \mathbf{k} = \frac{2\pi \mathbf{n}}{L}, \ \mathbf{n} \in Z^3$$

 \Rightarrow Poles of the resolvent $\langle \mathbf{p} | \frac{1}{z-H} | \mathbf{q} \rangle \Rightarrow$ Spectrum in a box

Lüscher formula for the scattering phase shift, moving frame M. Lage et al., in progress

$$\det\left(\delta_{mm'}\delta_{ll'} - \tan\delta_l(p) \qquad \qquad \mathcal{M}^{\mathbf{d}}_{lm,l'm'}(p) \qquad \qquad \right) = 0$$

Free Green function, finite volume

$$\mathbf{d} = \frac{L}{2\pi} \left(\mathbf{p}_1 + \mathbf{p}_2 \right)$$

Lüscher approach in the moving frame

The matrix $\mathcal{M}^{\mathbf{d}}_{lm,l'm'}(p)$ is given by a linear combination of

$$Z_{lm}^{\mathbf{d}}(1,q^2) = \lim_{s \to 1} \sum_{\mathbf{r} \in P_d} \frac{Y_{lm}(\mathbf{r})}{(\mathbf{r}^2 - q^2)^s}$$
$$P_d = \left\{ \mathbf{r} \in \mathbb{R}^3 | \mathbf{r} = \boldsymbol{\gamma}^{-1} (\mathbf{n} - \eta \mathbf{d}) \quad \text{for some} \quad \mathbf{n} \in \mathbb{Z}^3 \right\}$$
$$\boldsymbol{\gamma}^{-1} \mathbf{a} \doteq (\boldsymbol{\gamma}^{-1} a_{\parallel}, \mathbf{a}_{\perp}), \qquad q = \frac{pL}{2\pi}$$

- By using covariant NR effective field theory method, we obtain Lüscher formula in the moving frame, including unequal mass case and scattering of the particles with spin
- The rotation symmetry is broken down to (a subgroup of) (the double cover of) the cubic group; mixing of the partial waves
- Symmetry is reduced in the unequal mass case, e.g., $Z^{\mathbf{d}}_{lm}(1,q^2) \neq 0$ for odd values of l
- Planned: using *covariant* NR EFT to describe 3-body systems

Where are the resonance poles?

Consider CM frame:

Suppose that there exists an isolated narrow resonance in the vicinity of the elastic threshold. Assume that effective range expansion for the quantity $p \cot \delta(p)$ is convergent in the resonance region.

$$p \cot \delta(p) = A_0 + A_1 p^2 + \cdots$$

- \Rightarrow A_0, A_1, \cdots are measured on the lattice
- \Rightarrow Resonance pole in the complex momentum plane:

$$\cot \,\delta(p_*) = -i$$

 $\Rightarrow p \rightarrow p_*$ effectively amounts to the infinite-volume limit $\lim q \rightarrow \mp \infty$, since

$$\lim_{\operatorname{Im} q \to \mp \infty} \frac{Z_{00}(1;q^2)}{\pi^{3/2}q} = \mp i \operatorname{sign}(\operatorname{Re} q)$$

Example: The nature of the scalar mesons

V. Bernard, M. Lage, U.-G. Meißner and AR, arXiv:1010.6018

- What is the nature of the scalar mesons with a mass ~ 1 GeV: $q\bar{q}$ states? tetraquarks? hadronic molecules? ...?
- What kind of the information can be learned from the lattice?

Consider $f_0(980)$ in the vicinity of "heavy" threshold $s = s_t = 4M_K^2$:

2-channel LS equation, infinite volume ("heavy"=1, "light"=2):

$$T_{11} = H_{11} + H_{11}iq_1T_{11} + H_{12}iq_2T_{21}$$

$$T_{21} = H_{21} + H_{21}iq_1T_{11} + H_{22}iq_2T_{21}$$

Resonance pole(s) are determined from the secular equation:

$$1 - iq_1H_{11} - iq_2H_{22} - q_1q_2(H_{11}H_{22} - H_{12}^2) = 0$$

Quark compounds or molecules?

Compositeness criterium: S. Weinberg, PRD **130** (1963) 776; Phys. Rev. **131** (1963) 440; Phys. Rev. **137** (1965) B672

Pole counting: D. Morgan, NPA **543** (1992) 632 N. A. Törnqvist, PRD **51** (1995) 5312 D. Morgan and M. R. Pennington, PLB **258** (1991) 444; PRD **48** (1993) 1185 V. Baru *et al*, PLB **586** (2004) 53

S-matrix poles:

. . .

- A single pole near threshold: hadronic molecule
- More poles correspond to tightly bound state ($q\bar{q}$? tetraquarks?)
- The argument is only valid near threshold
- \Rightarrow Measure $H_{ij}(s)$ on the lattice (multi-channel Lüscher equation)
- \Rightarrow Find the position of the pole(s)

Lippmann-Schwinger equation in a finite volume

$$iq_i \to \mathcal{J}_i = \frac{2}{\sqrt{\pi L}} Z_{00}(1; k_i^2), \quad k_i = \frac{Lq_i}{2\pi}, \quad i = 1, 2$$

The pseudophase $\delta(q_2)$ is a measurable on the lattice:

$$\delta(q_2) = -\phi(k_2) + \pi n$$
, $k_2 = \frac{q_2 L}{2\pi}$, $\tan \phi(k_2) = -\frac{\pi^{3/2} k_2}{Z_{00}(1;k_2^2)}$

Expressing pseudophase through H_{ij} :

$$\tan \delta(q_2) = q_2 \left(H_{22}(s) + \frac{\mathcal{J}_1(s)(H_{12}(s))^2}{1 - \mathcal{J}_1(s)H_{11}(s)} \right)$$

 $\Rightarrow \delta(s) \rightarrow H_{ij}(s)$: not enough equations in the multi-channel case!

Twisted boundary conditions: $Kar{K}$ threshold

P.F. Bedaque, PLB 593 (2004) 82;G.M. de Diviitis, R. Petronzio and N. Tantalo, PLB 595 (2004) 408;G.M. de Diviitis and N. Tantalo, hep-lat/0409154;C.T. Sachrajda and G. Villadoro, PLB 609 (2005) 73

The twisting angle: $\theta \in (0, 2\pi)$

$$u(\mathbf{x} + L\mathbf{e}_i) = u(\mathbf{x}), \quad d(\mathbf{x} + L\mathbf{e}_i) = d(\mathbf{x}), \quad s(\mathbf{x} + L\mathbf{e}_i) = \mathbf{e}^{i\theta}s(\mathbf{x})$$

Only the "heavy" threshold with strange particles moves:

$$Z_{00}(1;k_1^2) \to Z_{00}^{\theta}(1,k_1^2) = \frac{1}{\sqrt{4\pi}} \lim_{s \to 1} \sum_{\mathbf{n} \in Z^3} \frac{1}{((\mathbf{n} - \theta/2\pi)^2 - k_1^2)^s}$$

Pseudophase: $\tan \delta^{\theta}(q_2) = q_2 \left(H_{22}(s) + \frac{\mathcal{J}_1^{\theta}(s)(H_{12}(s))^2}{1 - \mathcal{J}_1^{\theta}(s)H_{11}(s)} \right)$

 \Rightarrow Independent matching conditions for every single θ

An example of the energy levels

If the excited energy level does not change with θ , then $H_{12}(s_t) \simeq 0$ \Rightarrow Corresponds to a tightly bound quark state (analogy with HBC)

Pseudophase $\pi\pi$, $K\bar{K}$ system: periodic b.c.

Pseudophase $\pi\pi$, $K\bar{K}$ system: anti-periodic b.c.

$qar{q}$ or tetraquarks?

Strangeness content in the non-relativistic quark model:

$$\mathbf{S}_{i} = \int d^{3}\mathbf{x} : \bar{\psi}_{i}(\mathbf{x}, t)\psi_{i}(\mathbf{x}, t) :, \qquad \mathbf{S}_{i}|\Phi\rangle = (N_{i} + \bar{N}_{i})|\Phi\rangle$$
$$\Rightarrow \quad y_{B} = \frac{2\langle B|\bar{s}s|B\rangle}{\langle B|\bar{u}u + \bar{d}d|B\rangle}$$

В	qar q		$q^2 ar q^2$	
	wave funct.	y_B	wave funct.	y_B
I=0, ns	$rac{uar{u}+dar{d}}{\sqrt{2}}$,	0	$[ud][ar{u}ar{d}]$,	0
I=0, s	$sar{s},$	∞	$rac{[su][ar{s}ar{u}]+[sd][ar{s}ar{d}]}{\sqrt{2}}$,	2
$I = \frac{1}{2}$	$uar{s},\;dar{s}+conj.,$	2	$[su][ar{u}ar{d}],\;[sd][ar{u}ar{d}]+$ Conj.,	$\frac{2}{3}$
I = 1	$uar{d},\; rac{uar{u}-dar{d}}{\sqrt{2}}\;dar{u}$,	0	$[su][ar{s}ar{d}],\; rac{[su][ar{s}ar{u}]-[sd][ar{s}ar{d}]}{\sqrt{2}},\; [sd][ar{s}ar{u}],$	2

Feynman-Hellmann theorem:

$$y_B = 2\left(\frac{dM_B}{dm_s}\right) \cdot \left(\frac{dM_B}{dm_{ud}}\right)^{-1}$$

Strong interactions: from methods to structures, 14 February 2011, Bad-Honnef - p.17

Example: matrix elements

1) External field method:

$$D_{\mu} = \partial_{\mu} + G_{\mu} + qA_{\mu} \quad \Rightarrow \quad U'_{\mu} = U_{\mu}U^{B}_{\mu}$$

Energy level shift in the constant magnetic field $A_y = Bx$, spin=1/2:

$$E_{\pm} = m \pm \mu B + O(B^2), \quad \mu = g \frac{e}{2m} s \quad \Rightarrow \quad \mu = \frac{E_{1/2} - E_{-1/2}}{B}$$

2) Evaluation of the three-point function on the lattice:

$$G^{\alpha}_{\mu\nu}(t,\tau,\mathbf{p}',\mathbf{p}) = \sum_{\mathbf{x},\xi} e^{-\mathbf{p}'(\mathbf{x}-\xi)-i\mathbf{p}\xi} \langle 0|\chi_{\mu}(x)J^{\alpha}(\xi)\chi_{\nu}(0)^{\dagger}|0\rangle$$

$$G_{\mu\nu}(t,\mathbf{p}) = \sum_{\mathbf{x}} e^{-i\mathbf{p}\mathbf{x}} \langle 0|\chi_{\mu}(x)\chi_{\nu}(0)^{\dagger}|0\rangle, \qquad \chi^{\dagger}_{\mu} = \bar{d}\gamma_{\mu}u$$

$$R^{\alpha}_{\mu\nu}(\tau,\mathbf{p}',\mathbf{p}) = \frac{G^{\alpha}_{\mu\nu}(t,\tau,\mathbf{p}',\mathbf{p})}{G_{\mu\nu}(t,\tau',\mathbf{p}',\mathbf{p})} \sqrt{\frac{G_{\nu\nu}(t-\tau,\mathbf{p})G_{\mu\mu}(\tau,\mathbf{p}')G_{\mu\mu}(t,\mathbf{p}')}{G_{\mu\nu}(t,\tau',\mathbf{p}',\mathbf{p})}} \rightarrow G_{i}(Q^{2})$$

$$G_{\mu\mu}(t,\mathbf{p}') = \frac{1}{G_{\mu\mu}(t,\mathbf{p}')} \sqrt{\frac{1}{G_{\nu\nu}(\tau,\mathbf{p})G_{\mu\mu}(t-\tau,\mathbf{p}')G_{\nu\nu}(t,\mathbf{p})}} \xrightarrow{G_i(Q_i)}$$

Infinite-volume limit of the matrix elements

- For stable particles, the limit $L \to \infty$ exists
- Both methods give the matrix element sandwiched by the eigenvectors of the Hamiltonian. The resonances, however, do not correspond to a single energy level. How does one calculate the infinite-volume limit for these matrix elements?

- Fixed energy levels decay in the limit $L \to \infty$
- The matrix elements at fixed energy oscillate in the limit $L \to \infty$

Lüscher equation in the external field

Use <u>non-relativistic EFT</u> in a finite volume to calculate shift of the energy levels in the external field

$$T = 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < + 0 < +$$

$$H^{-1}(p,p) - J^{L}(p) - H^{-2}(p,p)\Gamma_{1}(p) - \Gamma_{2}(p) = 0$$

$$\longrightarrow \frac{2}{\sqrt{\pi L}} Z_{00}(1;q^2) = p \cot \delta(p) - 8\pi \sqrt{s} (H^{-2}(p,p)\Gamma_1(p) + \Gamma_2(p))$$

Determine shift of the pole position \Rightarrow magnetic moment

Analytic continuation into the complex plane

 $\Gamma_1(p)$: is a polynomial in p^2 , can be analytically continued $p^2 \rightarrow p_*^2$

$$\Gamma_2(p) \sim \frac{dJ^L(p)}{dP_0} = \frac{W_N W_\pi - p^2}{8\pi ps} \cot \delta(p) + \frac{W_N W_\pi}{8\pi ps} \frac{q\phi'(q)}{\sin^2 \phi(p)}$$

The solution of the problem:

- The "dangerous" term $\sim q\phi'(q)/\sin^2\phi(q)$ depends on the energy level index n through $q = q_n(p)$
- This term can be eliminated by measuring two energy levels $q_1(p)$ and $q_2(p)$

$$\hat{F}(p) = \frac{b_1 F_2 - b_2 F_1}{b_2 - b_1}$$
 where $F_i = \frac{Z_{00}(1, q_i^2)}{\pi^{3/2} q_i}$, $b_i = q_i \phi'(q_i)$

 \hookrightarrow The complex shift of the pole position is proportional to the magnetic moment of a resonance in the infinite volume

Results

- Non-relativistic effective field theories in a finite volume can be used to relate physical observables to the lattice data
- Using covariant NR EFT, Lüscher equation in the moving frame was derived in the non-equal mass case and for the scattering of the particles with spin
- Twisted boundary conditions are useful to study the multi-channel scattering:
 - ⇒ Extract both phase shift and inelasticity
 - ⇒ Determine complex scattering lengths at inelastic threshold
 - \Rightarrow Study molecular vs non-molecular nature of $f_0(980), a_0(980)$
- Strangeness content can be used to establish the non- $q\bar{q}$ nature of the states
- Lüscher formula can be generalized for the resonance matrix elements (e.g., magnetic moments of Δ, ρ, \cdots)