Effective field theories in a finite volume

Akaki Rusetsky, University of Bonn

V. Bernard, M. Lage, U.-G. Meißner and AR, arXiv:1010.6018
D. Hoja, U.-G. Meißner and AR, arXiv:1001.1641

Strong interactions: from methods to structures, 14 February 2011, Bad-Honnef

Plan

- Introduction: effective field theories in a finite volume
- Lüscher equation in a moving frame
- The nature of scalar mesons:
- Identification of the hadronic molecules on the lattice
- Twisted boundary conditions and the generalization of Lüscher formula for multi-channel scattering
- Strangeness content of the exotic states
- Infinite-volume limit of the matrix elements on the lattice
- Conclusions, outlook

Goals:

- Extracting scattering S-matrix elements from lattice simulations:
- Elastic scattering (Lüscher)
- Inelastic scattering: phase shifts, inelasticities, scattering lengths
- Resonance parameters
- The nature of the resonances: $q \bar{q}$ states, hadronic molecules, tetraquarks, etc
- Extracting matrix elements of external currents:
- Magnetic moments, axial charges, etc
- Electromagnetic formfactors

Infinite-volume limit?
\hookrightarrow Use effective field theory methods!

Lüscher approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237

Lattice calculations are always done in a finite volume
\Rightarrow The spectrum is discrete
\Rightarrow scattering? resonances?

$$
\text { Energy spectrum at: } \quad R_{\mathrm{int}}^{-1} L \simeq M L \gg 1, \quad a \rightarrow 0
$$

- Momenta are small: $p \simeq 2 \pi / L \ll M \Rightarrow$ NR EFT
- Finite-volume corrections to the energy levels are only power-suppressed in L
- Studying the dependence of the energy levels on L gives the scattering phase in the infinite volume \Rightarrow Resonances

Example: Lüscher equation the moving frame

Covariant non-relativistic EFT in the infinite volume, no spin:
G. Colangelo, J. Gasser, B. Kubis and AR, PLB 638 (2006) 187

$$
\begin{gathered}
\mathcal{L}=\Psi^{\dagger} 2 W_{N}\left(i \partial_{t}-W_{N}\right) \Psi+\Phi^{\dagger} 2 W_{\pi}\left(i \partial_{t}-W_{\pi}\right) \Phi+C_{0} \Psi^{\dagger} \Phi^{\dagger} \Phi \Psi+\cdots \\
W_{N}=\sqrt{M_{N}^{2}-\triangle}, \quad W_{\pi}=\sqrt{M_{\pi}^{2}-\triangle}
\end{gathered}
$$

Lippmann-Schwinger equation in an arbitrary moving frame:

$$
\begin{aligned}
& T\left(p_{1} p_{2} ; q_{1} q_{2}\right)=V\left(p_{1} p_{2} ; q_{1} q_{2}\right)+\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{V\left(p_{1} p_{2} ; k_{1} k_{2}\right) T\left(k_{1} k_{2} ; q_{1} q_{2}\right)}{4 w_{N} w_{\pi}\left(w_{N}+w_{\pi}-q_{1}^{0}-q_{2}^{0}\right)} \\
& \mathbf{k}_{N}=\eta \mathbf{P}+\mathbf{k}, \quad \mathbf{k}_{\pi}=(1-\eta) \mathbf{P}+\mathbf{k}, \quad \eta=\frac{1}{2}\left(1+\frac{m_{N}^{2}-M_{\pi}^{2}}{s}\right)
\end{aligned}
$$

Choice of the interaction Lagrangian:
V depends on the Lorentz-invariant variables $p_{i} \cdot p_{j}$

Partial-wave expansion: infinite volume

LS equation for the on-shell partial-wave amplitudes:

$$
\begin{aligned}
& T_{L}(s)=V_{L}(s)+V_{L}(s) G(s) V_{L}(s) \\
& V_{L}(s)=\left(s-s_{t}\right)^{L}\left(\sum_{n} C_{n L}\left(s-s_{t}\right)^{n}\right), \quad s_{t}=\left(m_{N}+M_{\pi}\right)^{2} \\
& G(s)=\lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{1}{4 w_{N} w_{\pi}\left(w_{N}+w_{\pi}-q_{1}^{0}-q_{2}^{0}\right)}=\frac{i p(s)}{8 \pi \sqrt{s}}
\end{aligned}
$$

Matching:

$$
\begin{aligned}
C_{n L} \quad \Leftrightarrow \quad & \text { effective-range expansion parameters } \\
& \text { (scattering length, effective radius, etc) }
\end{aligned}
$$

Non-relativistic EFT in a finite volume

S.R. Beane et al., NPA 747 (2005) 55 (no spin, CM frame)

Finite volume: $\quad \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}(\cdots) \rightarrow \frac{1}{L^{3}} \sum_{\mathbf{k}}(\cdots), \quad \mathbf{k}=\frac{2 \pi \mathbf{n}}{L}, \mathbf{n} \in Z^{3}$
\Rightarrow Poles of the resolvent $\langle\mathbf{p}| \frac{1}{z-H}|\mathbf{q}\rangle \quad \Rightarrow \quad$ Spectrum in a box
Lüscher formula for the scattering phase shift, moving frame
M. Lage et al., in progress

$$
\begin{aligned}
& \operatorname{det}\left(\delta_{m m^{\prime}} \delta_{l l^{\prime}}-\tan \delta_{l}(p)\right. \\
& \mathbf{d}=\frac{L}{2 \pi}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)
\end{aligned}
$$

$$
\underbrace{\mathcal{M}_{l m, l^{\prime} m^{\prime}}^{\mathrm{d}}(p)}
$$

$$
)=0
$$

Free Green function, finite volume

Lüscher approach in the moving frame

The matrix $\mathcal{M}_{l m, l^{\prime} m^{\prime}}^{\mathrm{d}}(p)$ is given by a linear combination of

$$
\begin{aligned}
& Z_{l m}^{\mathbf{d}}\left(1, q^{2}\right)=\lim _{s \rightarrow 1} \sum_{\mathbf{r} \in P_{d}} \frac{Y_{l m}(\mathbf{r})}{\left(\mathbf{r}^{2}-q^{2}\right)^{s}} \\
& P_{d}=\left\{\mathbf{r} \in \mathbb{R}^{3} \mid \mathbf{r}=\gamma^{-1}(\mathbf{n}-\eta \mathbf{d}) \quad \text { for some } \quad \mathbf{n} \in \mathbb{Z}^{3}\right\} \\
& \gamma^{-1} \mathbf{a} \doteq\left(\gamma^{-1} a_{\|}, \mathbf{a}_{\perp}\right), \quad q=\frac{p L}{2 \pi}
\end{aligned}
$$

- By using covariant NR effective field theory method, we obtain Lüscher formula in the moving frame, including unequal mass case and scattering of the particles with spin
- The rotation symmetry is broken down to (a subgroup of) (the double cover of) the cubic group; mixing of the partial waves
- Symmetry is reduced in the unequal mass case, e.g., $Z_{l m}^{\mathrm{d}}\left(1, q^{2}\right) \neq 0$ for odd values of l
- Planned: using covariant NR EFT to describe 3-body systems

Where are the resonance poles?

Consider CM frame:
Suppose that there exists an isolated narrow resonance in the vicinity of the elastic threshold. Assume that effective range expansion for the quantity $p \cot \delta(p)$ is convergent in the resonance region.

$$
p \cot \delta(p)=A_{0}+A_{1} p^{2}+\cdots
$$

$\Rightarrow \quad A_{0}, A_{1}, \cdots$ are measured on the lattice
\Rightarrow Resonance pole in the complex momentum plane:

$$
\cot \delta\left(p_{*}\right)=-i
$$

$\Rightarrow \quad p \rightarrow p_{*}$ effectively amounts to the infinite-volume limit $\operatorname{lm} q \rightarrow \mp \infty$, since

$$
\lim _{q \rightarrow \mp \infty} \frac{Z_{00}\left(1 ; q^{2}\right)}{\pi^{3 / 2} q}=\mp i \operatorname{sign}(\operatorname{Re} q)
$$

Example: The nature of the scalar mesons

V. Bernard, M. Lage, U.-G. Meißner and AR, arXiv:1010.6018

- What is the nature of the scalar mesons with a mass $\sim 1 \mathrm{GeV}$: $q \bar{q}$ states? tetraquarks? hadronic molecules? ...?
- What kind of the information can be learned from the lattice?

Consider $f_{0}(980)$ in the vicinity of "heavy" threshold $s=s_{t}=4 M_{K}^{2}$:
2-channel LS equation, infinite volume ("heavy"=1, "light"=2):

$$
\begin{aligned}
& T_{11}=H_{11}+H_{11} i q_{1} T_{11}+H_{12} i q_{2} T_{21} \\
& T_{21}=H_{21}+H_{21} i q_{1} T_{11}+H_{22} i q_{2} T_{21}
\end{aligned}
$$

Resonance pole(s) are determined from the secular equation:

$$
1-i q_{1} H_{11}-i q_{2} H_{22}-q_{1} q_{2}\left(H_{11} H_{22}-H_{12}^{2}\right)=0
$$

Quark compounds or molecules?

Compositeness criterium: S. Weinberg, PRD 130 (1963) 776; Phys. Rev. 131 (1963) 440;
Phys. Rev. 137 (1965) B672
Pole counting: D. Morgan, NPA 543 (1992) 632
N. A. Törnqvist, PRD 51 (1995) 5312
D. Morgan and M. R. Pennington, PLB 258 (1991) 444; PRD 48 (1993) 1185
V. Baru et al, PLB 586 (2004) 53
S-matrix poles:

- A single pole near threshold: hadronic molecule
- More poles correspond to tightly bound state ($q \bar{q}$? tetraquarks?)
- The argument is only valid near threshold
\Rightarrow Measure $H_{i j}(s)$ on the lattice (multi-channel Lüscher equation)
$\Rightarrow \quad$ Find the position of the pole(s)

Lippmann-Schwinger equation in a finite volume

$$
i q_{i} \rightarrow \mathcal{J}_{i}=\frac{2}{\sqrt{\pi} L} Z_{00}\left(1 ; k_{i}^{2}\right), \quad k_{i}=\frac{L q_{i}}{2 \pi}, \quad i=1,2
$$

The pseudophase $\delta\left(q_{2}\right)$ is a measurable on the lattice:

$$
\delta\left(q_{2}\right)=-\phi\left(k_{2}\right)+\pi n, \quad k_{2}=\frac{q_{2} L}{2 \pi}, \quad \tan \phi\left(k_{2}\right)=-\frac{\pi^{3 / 2} k_{2}}{Z_{00}\left(1 ; k_{2}^{2}\right)}
$$

Expressing pseudophase through $H_{i j}$:

$$
\tan \delta\left(q_{2}\right)=q_{2}\left(H_{22}(s)+\frac{\mathcal{J}_{1}(s)\left(H_{12}(s)\right)^{2}}{1-\mathcal{J}_{1}(s) H_{11}(s)}\right)
$$

$\Rightarrow \quad \delta(s) \rightarrow H_{i j}(s):$ not enough equations in the multi-channel case!

Twisted boundary conditions: $\boldsymbol{K} \bar{K}$ threshold

P.F. Bedaque, PLB 593 (2004) 82;
G.M. de Diviitis, R. Petronzio and N. Tantalo, PLB 595 (2004) 408;
G.M. de Diviitis and N. Tantalo, hep-lat/0409154;
C.T. Sachrajda and G. Villadoro, PLB 609 (2005) 73

The twisting angle: $\quad \theta \in(0,2 \pi)$

$$
u\left(\mathbf{x}+L \mathbf{e}_{i}\right)=u(\mathbf{x}), \quad d\left(\mathbf{x}+L \mathbf{e}_{i}\right)=d(\mathbf{x}), \quad s\left(\mathbf{x}+L \mathbf{e}_{i}\right)=\mathrm{e}^{i \theta} s(\mathbf{x})
$$

Only the "heavy" threshold with strange particles moves:

$$
Z_{00}\left(1 ; k_{1}^{2}\right) \rightarrow Z_{00}^{\theta}\left(1, k_{1}^{2}\right)=\frac{1}{\sqrt{4 \pi}} \lim _{s \rightarrow 1} \sum_{\mathbf{n} \in Z^{3}} \frac{1}{\left((\mathbf{n}-\theta / 2 \pi)^{2}-k_{1}^{2}\right)^{s}}
$$

Pseudophase:

$$
\tan \delta^{\theta}\left(q_{2}\right)=q_{2}\left(H_{22}(s)+\frac{\mathcal{J}_{1}^{\theta}(s)\left(H_{12}(s)\right)^{2}}{1-\mathcal{J}_{1}^{\theta}(s) H_{11}(s)}\right)
$$

\Rightarrow Independent matching conditions for every single θ

An example of the energy levels

If the excited energy level does not change with θ, then $H_{12}\left(s_{t}\right) \simeq 0$ \Rightarrow Corresponds to a tightly bound quark state (analogy with HBC)

Pseudophase $\pi \pi, K \bar{K}$ system: periodic b.c.

Pseudophase $\pi \pi, K \bar{K}$ system: anti-periodic b.c.

$q \bar{q}$ or tetraquarks?

Strangeness content in the non-relativistic quark model:

$$
\begin{aligned}
& \mathbf{S}_{i}=\int d^{3} \mathbf{x}: \bar{\psi}_{i}(\mathbf{x}, t) \psi_{i}(\mathbf{x}, t):, \mathbf{S}_{i}|\Phi\rangle=\left(N_{i}+\bar{N}_{i}\right)|\Phi\rangle \\
& \Rightarrow \quad y_{B}=\frac{2\langle B| \bar{s} s|B\rangle}{\langle B| \bar{u} u+\bar{d} d|B\rangle}
\end{aligned}
$$

B	$q \bar{q}$	$q^{2} \bar{q}^{2}$		
	wave funct.	y_{B}	y_{B}	
$I=0, \mathrm{~ns}$	$\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}$,	0	wave funct.	0
$I=0, \mathrm{~s}$	$s \bar{s}$,	∞	$[u d][\bar{u} \bar{d}]$,	2
$I=\frac{1 s u][\bar{s} \bar{u}]+[s d][\bar{d} \bar{d}]}{\sqrt{2}}$,	$u \bar{s}, d \bar{s}+$ conj.,	2	$[s u][\bar{u} \bar{d}],[s d][\bar{u} \bar{d}]+$ conj.,	$\frac{2}{3}$
$I=1$	$u \bar{d}, \frac{u \bar{u}-d \bar{d}}{\sqrt{2}} d \bar{u}$,	0	$[s u][\bar{s} \bar{d}], \frac{[s u][\bar{s} \bar{u}]-[s d][\bar{s} \bar{d}]}{\sqrt{2}},[s d][\bar{s} \bar{u}]$,	2

Feynman-Hellmann theorem: $\quad y_{B}=2\left(\frac{d M_{B}}{d m_{s}}\right) \cdot\left(\frac{d M_{B}}{d m_{u d}}\right)^{-1}$

Example: matrix elements

1) External field method:

$$
D_{\mu}=\partial_{\mu}+G_{\mu}+q A_{\mu} \quad \Rightarrow \quad U_{\mu}^{\prime}=U_{\mu} U_{\mu}^{B}
$$

Energy level shift in the constant magnetic field $A_{y}=B x$, spin=1/2:

$$
E_{ \pm}=m \pm \mu B+O\left(B^{2}\right), \quad \mu=g \frac{e}{2 m} s \quad \Rightarrow \quad \mu=\frac{E_{1 / 2}-E_{-1 / 2}}{B}
$$

2) Evaluation of the three-point function on the lattice:

$$
\begin{array}{r}
G_{\mu \nu}^{\alpha}\left(t, \tau, \mathbf{p}^{\prime}, \mathbf{p}\right)=\sum_{\mathbf{x}, \xi} e^{-\mathbf{p}^{\prime}(\mathbf{x}-\xi)-i \mathbf{p} \xi}\langle 0| \chi_{\mu}(x) J^{\alpha}(\xi) \chi_{\nu}(0)^{\dagger}|0\rangle \\
G_{\mu \nu}(t, \mathbf{p})=\sum_{\mathbf{x}} e^{-i \mathbf{p x}}\langle 0| \chi_{\mu}(x) \chi_{\nu}(0)^{\dagger}|0\rangle, \quad \chi_{\mu}^{\dagger}=\bar{d} \gamma_{\mu} u \\
R_{\mu \nu}^{\alpha}\left(\tau, \mathbf{p}^{\prime}, \mathbf{p}\right)=\frac{G_{\mu \nu}^{\alpha}\left(t, \tau, \mathbf{p}^{\prime}, \mathbf{p}\right)}{G_{\mu \mu}\left(t, \mathbf{p}^{\prime}\right)} \sqrt{\frac{G_{\nu \nu}(t-\tau, \mathbf{p}) G_{\mu \mu}\left(\tau, \mathbf{p}^{\prime}\right) G_{\mu \mu}\left(t, \mathbf{p}^{\prime}\right)}{G_{\nu \nu}(\tau, \mathbf{p}) G_{\mu \mu}\left(t-\tau, \mathbf{p}^{\prime}\right) G_{\nu \nu}(t, \mathbf{p})}} \rightarrow G_{i}\left(Q^{2}\right)
\end{array}
$$

Infinite-volume limit of the matrix elements

- For stable particles, the limit $L \rightarrow \infty$ exists
- Both methods give the matrix element sandwiched by the eigenvectors of the Hamiltonian. The resonances, however, do not correspond to a single energy level. How does one calculate the infinite-volume limit for these matrix elements?

- Fixed energy levels decay in the limit $L \rightarrow \infty$
- The matrix elements at fixed energy oscillate in the limit $L \rightarrow \infty$

Lüscher equation in the external field

Use non-relativistic EFT in a finite volume to calculate shift of the energy levels in the external field

$$
\begin{aligned}
& \mathrm{T}=>0 \bigcirc<+>\bigcirc \bigcirc \bigcirc \bigcirc<+>\bigcirc \bigcirc \bigcirc \bigcirc+\ldots \\
& \Gamma_{1} \\
& \Gamma_{2} \\
& H^{-1}(p, p)-J^{L}(p)-H^{-2}(p, p) \Gamma_{1}(p)-\Gamma_{2}(p)=0 \\
& \hookrightarrow \frac{2}{\sqrt{\pi} L} Z_{00}\left(1 ; q^{2}\right)=p \cot \delta(p)-8 \pi \sqrt{s}\left(H^{-2}(p, p) \Gamma_{1}(p)+\Gamma_{2}(p)\right) \\
& \text { Determine shift of the pole position } \quad \Rightarrow \quad \text { magnetic moment }
\end{aligned}
$$

Analytic continuation into the complex plane

$\Gamma_{1}(p)$: is a polynomial in p^{2}, can be analytically continued $p^{2} \rightarrow p_{*}^{2}$

$$
\Gamma_{2}(p) \sim \frac{d J^{L}(p)}{d P_{0}}=\frac{W_{N} W_{\pi}-p^{2}}{8 \pi p s} \cot \delta(p)+\frac{W_{N} W_{\pi}}{8 \pi p s} \frac{q \phi^{\prime}(q)}{\sin ^{2} \phi(p)}
$$

The solution of the problem:

- The "dangerous" term $\sim q \phi^{\prime}(q) / \sin ^{2} \phi(q)$ depends on the energy level index n through $q=q_{n}(p)$
- This term can be eliminated by measuring two energy levels $q_{1}(p)$ and $q_{2}(p)$

$$
\hat{F}(p)=\frac{b_{1} F_{2}-b_{2} F_{1}}{b_{2}-b_{1}} \quad \text { where } \quad F_{i}=\frac{Z_{00}\left(1, q_{i}^{2}\right)}{\pi^{3 / 2} q_{i}}, \quad b_{i}=q_{i} \phi^{\prime}\left(q_{i}\right)
$$

\hookrightarrow The complex shift of the pole position is proportional to the magnetic moment of a resonance in the infinite volume

Results

- Non-relativistic effective field theories in a finite volume can be used to relate physical observables to the lattice data
- Using covariant NR EFT, Lüscher equation in the moving frame was derived in the non-equal mass case and for the scattering of the particles with spin
- Twisted boundary conditions are useful to study the multi-channel scattering:
\Rightarrow Extract both phase shift and inelasticity
\Rightarrow Determine complex scattering lengths at inelastic threshold
\Rightarrow Study molecular vs non-molecular nature of $f_{0}(980), a_{0}(980)$
- Strangeness content can be used to establish the non- $q \bar{q}$ nature of the states
- Lüscher formula can be generalized for the resonance matrix elements (e.g., magnetic moments of Δ, ρ, \cdots)

