

- Motivation : quarkonium as signal for deconfinement
- EFT approach in the small distance region
- EFT approach in the intermediate and large distance region
- Possible phenomenological implications
- Summary

Strong Interactions: from Method to Structures, Bad Honnef, February 12-16, 2011

Quarkonium as signal for deconfinement and color screening

Matsui, Satz, PLB 178 (86) 416

How to define the potential at T > 0?

How to study the melting of the bound states from 1st principles ?

Quarkonium spectral functions

In-medium properties and/or dissolution of quarkonium states are encoded in the spectral functions

$$\sigma(\omega, p, T) = \frac{1}{2\pi} \operatorname{Im} \int_{-\infty}^{\infty} dt e^{i\omega t} \int d^3 x e^{ipx} \langle [J(x, t), J(x, 0)] \rangle_T$$

Due to analytic continuation spectral functions are related to Euclidean time quarkonium correlators that can be calculated on the lattice => need to reconstruct the spectral functions

$$G(\tau, p, T) = \int d^3x e^{ipx} \langle J(x, -i\tau), J(x, 0) \rangle_T$$

$$G(\tau, p, T) = \int_0^\infty d\omega \sigma(\omega, p, T) \frac{\cosh(\omega \cdot (\tau - \frac{1}{2T}))}{\sinh(\omega/(2T)} \stackrel{\text{MEM}}{\longrightarrow} \frac{\sigma(\omega, p, T)}{IS \text{ charmonium survives to } 1.6T_c ??$$

Umeda et al, EPJ C39S1 (05) 9, Asakawa, Hatsuda, PRL 92 (2004) 01200, Datta, et al, PRD 69 (04) 094507, ...

Effective field theory approach for heavy quark bound states and potential models

The heavy quark mass provides a hierarchy of different energy scales

The scale separation allows to construct sequence of effective field theories: NRQCD, pNRQCD

Potential model appears as the tree level approximation of the EFT and can be systematically improved

Brambilla, Ghiglieri, P.P., Vairo, PRD 78 (08) 014017

pNRQCD at finite temperature for static quarks

EFT for energy scale : $E_{bind} \sim \Delta V = (V_o - V_s) \sim mv^2$ Ultrasoft quark and gluons $\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^a F^{a\,\mu\nu} + \sum_{i=1}^{n_f} \bar{q}_i i \mathcal{D} q_i$ Singlet $Q\bar{Q}$ field Octet $Q\bar{Q}$ field $+ \int d^3r \operatorname{Tr} \left\{ S^{\dagger} \left[i\partial_0 - \frac{-\nabla^2}{m} - V_s(r,T) \right] S + O^{\dagger} \left[iD_0 - \frac{-\nabla^2}{m} - V_o(r,T) \right] O \right\}$ $+ V_A \operatorname{Tr} \left\{ O^{\dagger} \vec{r} \cdot g \vec{E} S + S^{\dagger} \vec{r} \cdot g \vec{E} O \right\} + \frac{V_B}{2} \operatorname{Tr} \left\{ O^{\dagger} \vec{r} \cdot g \vec{E} O + O^{\dagger} O \vec{r} \cdot g \vec{E} \right\} + \dots$ potential is the matching parameter of EFT !

 $\left[i\partial_0 - \frac{-\nabla^2}{m} - V_s(r,T)\right]S(r,t) = 0$

 $E_{bind} \sim \Delta V \sim \alpha_s/r \ll T$, m_D there are thermal contribution to the potentials

Singlet-octet transition :

Landau damping :

Brambilla, Ghiglieri, P.P., Vairo, PRD 78 (08) 014017

Thermal pNRQCD in the small distance regime

 $r \ll 1/T \ll 1/m_D$

The heavy quarks do not feel the medium and the quark anti-quark pair interacts with the medium as a dipole

 $NRQCD \quad 1/r \rightarrow pNRQCD \quad T, \quad m_D \rightarrow pNRQCD_{therm}$

Contribution from scale *T*:

The $1/\epsilon$ pole is of IR origin and will cancel against UV poles from lower scales

Contribution from scale m_D :

$$\delta V_s(r,T) = -\frac{C_F}{6} \alpha_s r^2 m_D^3 + i \frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(-\frac{1}{\epsilon} - \ln \frac{\mu_2^2}{m_D^2} \right)$$

The $1/\epsilon$ pole is of UV origin and will cancel against IR poles from scale T giving a finite imaginary part that contains a term :

$$-i\frac{C_F}{6}\alpha_s r^2 T m_D^2 \left(\ln \frac{T^2}{m_D^2} + const. \right)$$

The logarithm ensures that the imaginary part is always negative in the weak coupling regime ($m_D << T$) The potential for $r \ll 1/T \ll 1/m_D$:

Thermal pNRQCD in the large distance regime

 $1/T \ll r$

Heavy quarks interact with the medium which generates thermal mass and thermal width

$$NRQCD \quad T \to NRQCD_{HTL} \quad 1/r, m_D \to pNQRCD_{HTL}$$

no modification of the heavy quark sector at LO

1) $l/r >> m_D =>$ scales l/r and m_D are integrated out subsequently

 $1/\varepsilon$ poles of IR and UV origin appear in ImV_s when scales 1/r and m_D are integrated out, but these poles cancel in the sum as this happened in the short distance regime

2) $1/r \sim m_D =>$ scales 1/r and m_D are integrated out simultaneously

 $\int d^3r \operatorname{Tr} \left\{ \mathsf{S}^{\dagger} \left[i\partial_0 + V_s(r,T) + 2\delta m \right] \mathsf{S} \right\}$ Singlet part of the lagrangian becomes :

 $\delta m = -\frac{C_F}{2} \alpha_s(m_D + iT)$ thermal mass and width of the heavy quark

mined by Landau damping and not by screening as originally suggested by Matusi and Satz

The role of the imaginary part for bottomonium

no bottomonium state could survive for T > 450 MeV

for more systematic calculations see talk J. Ghiglieri on Wednesday

Summary

• EFT approach provides a tool to systematically study quarkonium properties at T>0 (can be applied for bottomonium, see talk by Jacopo Ghiglieri)

• The potentials can be rigorously defined at finite temperatures as parameters of the EFT lagrangian

• The potentials at T>0 have both real and imaginary part and different from the free energy of static quarks calculated in lattice QCD

• The potential receives power law corrections in the small distance, r < 1/T and intermediate distance regimes $r < 1/m_D$

• The real part of the potential potential is exponentially screened in the large distance regime $r > 1/m_D$, and ReV << ImV but even for intermediate distances the imaginary part could be very important for quarkonium spectral functions

• EFT approach could be used to calculate Euclidean time static quark correlators (see talk by Antonio Vairo);

Need to extend the calculations to the octet sector of pNRQCD at T>0