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Outline

• Quarkonium in media: the EFT approach

• Building blocks: non-relativistic EFTs at zero 
temperature and the real-time formalism

• Integrating out in succession the relevant scales 
and calculating the spectrum and width of 
quarkonium

• Conclusions and outlook
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Quarkonium suppression
• Proposed in 1986 as a probe and “thermometer” 

of the medium produced by the collision
Matsui Satz PLB178 (1986)

• Motivated by colour screening of the interaction

V (r) ∼ −αs
e−mDr

r

• Studied with potential models, lattice spectral 
functions, ...

r ∼ 1
mD

Bound state
dissolves



Potential modelsStatic quark anti-quark free and internal energy in 2-flavor QCD Olaf Kaczmarek
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Figure 1: (left) The colour singlet quark anti-quark free energies, F1(r,T ), at several temperatures as func-
tion of distance in physical units. Shown are results from lattice studies of 2-flavour QCD (from [1]). The

solid line represents the T = 0 heavy quark potential,V (r). The dashed error band corresponds to the string
breaking energy at zero temperature, V (rbreaking) ! 1000− 1200 MeV, based on the estimate of the string

breaking distance, rbreaking ! 1.2−1.4 fm [2]. (right) The screening radius estimated from the inverse Debye
mass, rD ≡ 1/mD (Nf=0: open squares, Nf=2 filled squares), and the scale rmed (Nf=0: open circles, Nf=2:

filled circles, Nf=3: crosses) defined in (2.1) as function of T/Tc. The horizontal lines give the mean squared
charge radii of some charmonium states, J/! , "c and ! ′ (see also [3, 4]) and the band at the left frame shows
the distance at which string breaking is expected in 2-flavor QCD at T = 0 and quark mass m#/m$ ! 0.7
[2].

1. Introduction

A simple Ansatz to study the possible existence of bound states above the critical temperature

is to use effective temperature dependent potentials that model the medium modifications of strong

interactions in a quark gluon plasma. To what extend a suitable effective potential at finite tem-

perature can be defined by quark antiquark free or internal energies and furthermore how realistic

such (simple) descriptions of bound states in a deconfined medium are is still an open question.

By comparing the screening radii obtained from lattice results on singlet free energies in 2-flavour

QCD to the mean squared charge radii we obtain first estimates on the temperatures where char-

monium bound states may be influenced by medium effects. In more realistic potential model

calculations effective temperature dependent potentials that model medium effects are used in the

Schrödinger equation. We present the heavy quark free energies and their contributions, i.e. en-

tropy and internal energy, and discuss the different results obtained using those contributions in

potential models.

2. Screening radii and medium modifications

In Fig. 1 (left) we show results for the heavy quark anti-quark free energies in 2-flavour QCD

[1]. While in the limit of short distances F1(r,T ) shows no or only little medium effects, i.e. F1(r→

0) ! V (r), at large distances the free energies approach temperature dependent constant values,

F%(T ) ≡ F1(r→ %,T ). To characterise distances at which medium effects become important we

introduce a screening radius, rmed , defined by the distance at which the value of the zero temperature
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• There is qualitative agreement on this picture of 
sequential melting 

• However there are still issues with the definition of an in-
medium potential



The method:
an EFT approach

• Perturbative computation of the real-time potential between a 
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The EFT approach

• Extend the well-established zero temperature EFT 
framework for heavy quark-antiquark bound states 
(NRQCD, pNRQCD) to finite temperature

• Systematic approach with modern, rigorous definition 
of the potential (real-time matching coefficient)

• Transparent connection with quantum mechanics and 
the Schrödinger equation picture, which appears as the 
zeroth-order approximation in the EFT framework



 

Building blocks: NR EFTs 
and the real-time formalism



• The Wilson coefficient are obtained by matching 
appropriate Green functions in the two theories

• The procedure can be iterated 

Effective Field Theories
• EFTs prove to be a valuable tool for physical problems 

characterized by various sufficiently separated energy/
momentum scales

• An EFT is constructed by integrating out modes of energy 
and momentum larger than the cut-off 

Wilson coefficient

Low-energy 
operator/
large scale         

LEFT =
�

n

cn(µ/Λ)
On

Λdn−4

µ� Λ

. . .� µ2 � Λ2 � µ1 � Λ1



T=0 NR bound states
• Non-relativistic        bound states 

are characterized by the hierarchy 
of the mass, momentum and 
energy scales

QQ
m

mv ∼ mαs ∼
�
1

r

�

mv2 ∼ mα2
s ∼ E



T=0 NR bound states
• Non-relativistic        bound states 

are characterized by the hierarchy 
of the mass, momentum and 
energy scales

• One can then expand observables 
in terms of the ratio of the scales 
and construct a hierarchy of EFTs 
that are equivalent to QCD order-
by-order in the expansion 
parameter

QQ
m

mv ∼ mαs ∼
�
1

r

�

mv2 ∼ mα2
s ∼ E



T=0 Scales

Integration of the 
mass scale:

NRQCD
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Thermodynamical scales

• The thermal medium introduces new 
scales in the physical problem

• The temperature

• The electric screening scale (Debye mass)

• The magnetic screening scale (magnetic 
mass)

• In the weak coupling assumption these 
scales develop a hierarchy

T

gT ∼ mD

g2T ∼ mm



Scales of the problem
m
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• In our previous works various possibilities have 
been studied, from             to

• In the regime                    the result of Laine et al 
2007 is reobtained (also in the Abelian case)
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1. Introduction

Heavy quarkonium has been suggested since long time as a thermometer for the medium

that forms at the core of heavy-ion collision experiments [1]. The early arguments were

based on the näıve expectation that above the deconfinement temperature the confining

part of the quark-antiquark potential vanishes and the Coulomb part turns into a Yukawa

potential due to screening. Since the Yukawa potential suports a finite number of bound

states depending on the screening (Debye) mass, and the latter is linear in the temperature,

it is then clear that the relative fraction of the different heavy quarkonium states observed

will depend on the temperature of the medium. In addition, the electromagnetic decays

of these states provide a clean experimental signature. The gross picture above appears

to be supported by experiment [2]. Nevertheless, a new mechanism for heavy quarkonium

dissociation has been identified in recent times, which is related to Landau damping rather

than screening [3], and appears to be dominant at weak coupling [4]. It is then worth

revisiting the physics of heavy quarkonium states in a thermal bath in a more systematic

way. We shall focus here on temperatures for which πT is smaller than the typical momen-

tum transfer in the bound states. Such temperatures are those reachable at present days

colliders [5].

Heavy quarkonium in a medium is characterized both by the scales typical of a non-

relativistic bound state and by the thermal scales. The non-relativistic scales are the inverse

of the typical radius of the system 1/a0 and its typical binding energy E. The thermal

scales are the temperature (or multiple of πT ) and the electric screening mass mD, among

other lower energy scales, which are not relevant to our discussion. In the weak-coupling

regime, which we will assume throughout this work, these scales may be expressed in terms

of the strong coupling constant g ! 1, the heavy quark mass m, and the temperature T :

mD ∼ gT , 1/a0 ∼ mαs and E ∼ mα2
s , where αs = g2/(4π).

Non-relativistic scales and thermal scales are hierarchically ordered. This allows to

investigate the quarkonium properties in a medium using the same systematic framework

provided by non-relativistic effective field theories (EFTs) at zero temperature [6]. In the

last few years, a model independent study of the real-time static potential was initiated

for large temperatures (T # 1/r >∼ mD) in [3, 7, 8, 9] and its implications for a QED and

QCD plasma studied. In particular, it was pointed out the emergence of a finite thermal

decay width and its relevance for the disappearance of quarkonium in a thermal bath. For a

wider range of temperatures, including low temperatures, an EFT study of non-relativistic

bound states in a plasma was initiated in [4] for QED and in [10] for QCD in the static

limit. New sources for a quarkonium thermal width were identified.

In this work, we aim at studying heavy quarkonium at finite temperature including

relativistic corrections induced by a large but finite quark mass, in this way merging and

completing the findings of Refs. [4, 10]. We will adopt the same real-time EFT framework of

[4, 10] and assume for definitiveness the following hierarchy between the thermodynamical

and the non-relativistic scales:

m # mαs # T # mα2
s # mD. (1.1)

– 1 –

m

T

ΛQCD

mαs

mD

mα2
s
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that forms at the core of heavy-ion collision experiments [1]. The early arguments were

based on the näıve expectation that above the deconfinement temperature the confining

part of the quark-antiquark potential vanishes and the Coulomb part turns into a Yukawa

potential due to screening. Since the Yukawa potential suports a finite number of bound

states depending on the screening (Debye) mass, and the latter is linear in the temperature,

it is then clear that the relative fraction of the different heavy quarkonium states observed

will depend on the temperature of the medium. In addition, the electromagnetic decays

of these states provide a clean experimental signature. The gross picture above appears

to be supported by experiment [2]. Nevertheless, a new mechanism for heavy quarkonium

dissociation has been identified in recent times, which is related to Landau damping rather

than screening [3], and appears to be dominant at weak coupling [4]. It is then worth

revisiting the physics of heavy quarkonium states in a thermal bath in a more systematic

way. We shall focus here on temperatures for which πT is smaller than the typical momen-

tum transfer in the bound states. Such temperatures are those reachable at present days

colliders [5].

Heavy quarkonium in a medium is characterized both by the scales typical of a non-

relativistic bound state and by the thermal scales. The non-relativistic scales are the inverse

of the typical radius of the system 1/a0 and its typical binding energy E. The thermal

scales are the temperature (or multiple of πT ) and the electric screening mass mD, among

other lower energy scales, which are not relevant to our discussion. In the weak-coupling

regime, which we will assume throughout this work, these scales may be expressed in terms

of the strong coupling constant g ! 1, the heavy quark mass m, and the temperature T :

mD ∼ gT , 1/a0 ∼ mαs and E ∼ mα2
s , where αs = g2/(4π).

Non-relativistic scales and thermal scales are hierarchically ordered. This allows to

investigate the quarkonium properties in a medium using the same systematic framework

provided by non-relativistic effective field theories (EFTs) at zero temperature [6]. In the

last few years, a model independent study of the real-time static potential was initiated

for large temperatures (T # 1/r >∼ mD) in [3, 7, 8, 9] and its implications for a QED and

QCD plasma studied. In particular, it was pointed out the emergence of a finite thermal

decay width and its relevance for the disappearance of quarkonium in a thermal bath. For a

wider range of temperatures, including low temperatures, an EFT study of non-relativistic

bound states in a plasma was initiated in [4] for QED and in [10] for QCD in the static

limit. New sources for a quarkonium thermal width were identified.

In this work, we aim at studying heavy quarkonium at finite temperature including

relativistic corrections induced by a large but finite quark mass, in this way merging and

completing the findings of Refs. [4, 10]. We will adopt the same real-time EFT framework of

[4, 10] and assume for definitiveness the following hierarchy between the thermodynamical

and the non-relativistic scales:

m # mαs # T # mα2
s # mD. (1.1)
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• In our previous works various possibilities have 
been studied, from             to

• In the regime                    the result of Laine et al 
2007 is reobtained (also in the Abelian case)

• In this new work we adopt this hierarchy

• Thermal effects are thus a perturbation to the 
Coulombic bound state, but they still modify the 
potential

• Relevance for bottomonium phenomenology

• The temperature is below the dissociation 
temperature 

T � E m� T � 1/r ∼ mD

T � 1

r
∼ mD

VHTL(r) = −αsCF

�
e−mDr

r
− i

2T

mDr
f(mDr)

�

1. Introduction

Heavy quarkonium has been suggested since long time as a thermometer for the medium
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regime, which we will assume throughout this work, these scales may be expressed in terms
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mD ∼ gT , 1/a0 ∼ mαs and E ∼ mα2
s , where αs = g2/(4π).

Non-relativistic scales and thermal scales are hierarchically ordered. This allows to

investigate the quarkonium properties in a medium using the same systematic framework

provided by non-relativistic effective field theories (EFTs) at zero temperature [6]. In the

last few years, a model independent study of the real-time static potential was initiated

for large temperatures (T # 1/r >∼ mD) in [3, 7, 8, 9] and its implications for a QED and

QCD plasma studied. In particular, it was pointed out the emergence of a finite thermal

decay width and its relevance for the disappearance of quarkonium in a thermal bath. For a

wider range of temperatures, including low temperatures, an EFT study of non-relativistic

bound states in a plasma was initiated in [4] for QED and in [10] for QCD in the static

limit. New sources for a quarkonium thermal width were identified.

In this work, we aim at studying heavy quarkonium at finite temperature including

relativistic corrections induced by a large but finite quark mass, in this way merging and

completing the findings of Refs. [4, 10]. We will adopt the same real-time EFT framework of

[4, 10] and assume for definitiveness the following hierarchy between the thermodynamical
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Our goal
• Our goal is then to compute the 

spectrum (or thermal corrections to it) 
and the thermal width in this hierarchy 
and power counting, up to order

• This will be achieved by integrating out 
the heavier scales in succession and 
creating a series of EFTs

• Before starting, a reminder of the RTF

m

T

ΛQCD

mαs

mD

mα2
s

mα5
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• Time evolution 
along this 
Schwinger-
Keldysh path

•                 limit

• Doubling of the 
degrees of 
freedom

ti → −∞

The real-time formalism

Figure 3.1: The time path C for the real-time formalism. We call C1 the horizontal leg
from ti to −ti, C3 the vertical leg from −ti to −ti − iσ, C2 the horizontal, backward leg
from −ti − iσ to ti − iσ and finally C4 the last leg from ti − iσ to ti − iβ. It can be
shown that physical observables are independent of σ as long as 0 < σ < β. We will
choose σ = 0+ throughout this chapter.
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The real-time formalism
• Closer to the T=0 EFT approach

• In the static quark sector the virtual DOF 
decouple

• Simpler than the imaginary-time + 
analytical continuation (potential as pole 
of the propagator in the large real-time 
limit)

• Propagators as 2X2 matrices, vertices of 
type “2” have opposite sign



• Propagators written as

• Static quark 

(static quark of type 2 decouple)

• Gluons (Coulomb gauge)

Free propagators

S(0)
αβ (k0) = δαβ





i

k0 + iη
0

2πδ(k0)
−i

k0 − iη





The propagator thus becomes a 2× 2 matrix

D =
�

D11 D12

D21 D22

�
(3.30)

where the off-diagonal elements transform real fields into virtual ones and vice-versa. The
off-diagonal matrix elements have a dependence on σ that however enters no physical
observable. Choosing σ = 0+ the scalar propagator can be shown to be

D(k) =









i

k2 −m2 + i�
θ(−k0)2πδ(k2 −m2)

θ(k0)2πδ(k2 −m2) − i

k2 −m2 − i�





+2πδ(k2 −m2)nB(|k0|)
�

1 1
1 1

��
, (3.31)

where the first line is the T = 0 part, whereas the second line is temperature-dependent
through the Bose distribution.
We now evaluate the vertices: in the second line of Eq. (3.27) the interaction terms
of the two fields have a relative minus sign, originating again from the different time
direction of the two horizontal legs. Thus we observe that fields in a vertex must be of
the same kind and vertices of kind 2 have a minus sign with respect to the vertices of
type 1, which are the same of T = 0 field theory.
We now give the propagators for fermions and gauge fields. The full treatment can be
found in textbooks such as [42] and [43] and in the review [44]. The fermion propagator
is

S(p) = (/p + m)









i

p2 −m2 + i�
−θ(−p0)2πδ(p2 −m2)

−θ(p0)2πδ(p2 −m2) − i

p2 −m2 − i�





−2πδ(p2 −m2)nF (|p0|)
�

1 1
1 1

��
(3.32)

and we observe the appearance of minus signs with respect to (3.31), that are again a
consequence of fermionic anticommutation.
In the following we will need the static quark propagator, the thermal analog of Eq.
(A.2). In the static limit, i. e. m → ∞, p0 diverges too and so the second line in Eq.
(3.32) vanishes since nF (p0 →∞)→ 0. The static propagator can then be shown to be
[49]

Sstatic(p0) =





i

p0 + i�
0

2πδ(p0)
−i

p0 − i�



 , (3.33)

where the mass has been removed by a field redefinition. We furthermore notice that
the “12” term has vanished.
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where the apex (0) stands for the free propagator, α,β are Dirac indices and colour indices

have been suppressed for simplicity. The static-antiquark propagator is obtained by the

substitution k0 → −k0. Since the [S
(0)
αβ (k)]12 component vanishes: the static quark fields of

type “2” never enter in any amplitude of physical fields, i.e. fields of type “1”. Therefore

the static fields “2” decouple and may be ignored when considering physical amplitudes.

Throughout this paper we adopt the Coulomb gauge for our calculations. The free

propagators reads [11]:

D(0)
00 (k) =




i

k2
0

0 − i

k2



 , (2.3)

D(0)
ij (k0, k) =

(
δij −

kikj

k2

)









i

k20 − k2 + iη
θ(−k0) 2πδ(k20 − k2)

θ(k0) 2πδ(k20 − k2) − i

k20 − k2 − iη





+2πδ(k20 − k2)nB(|k0|)
(

1 1

1 1

)}
, (2.4)

where k stands for

√√√√
3∑

i=1

ki 2.

Due to the decoupling of the heavy quarks of type “2”, in the following we will need

only the “11” component of the heavy quarks and gluon propagators and all our equations

will refer to just this component also when not explicitly stated. In particular, we recall

that at equilibrium the “11” component of the gluon propagator can be written in terms

of the retarded and advanced propagators:

DR
µν(k) =

∫
d4x ei(k0x0−k·x) θ(x0)〈[Aµ(x), Aν(0)], (2.5)

DA
µν(k) = −

∫
d4x ei(k0x0−k·x) θ(−x0)〈[Aµ(x), Aν(0)]; (2.6)

we then have

[Dµν ]11 =
DR

µν(k0, k) +DA
µν(k0, k)

2
+

(
1

2
+ nB(k0)

)(
DR

µν(k0, k)−DA
µν(k0, k)

)
, (2.7)

which holds for the tree level propagator as well as for the full one. The second term

on the right-hand side, proportional to the difference between the retarded and advanced

propagators, is often termed the symmetric propagator.

3. Integrating out the scales m and mαs

Our aim is to calculate the quarkonium spectrum in a thermal bath of temperature T .

We take advantage of the hierarchy of scales (1.1) by constructing a hierarchy of effective

field theories that follow from QCD by systematically integrating out the largest scales.

– 3 –

D(0)
ij (k0, k) =

�
δij −

kikj

k2

�









i

k20 − k2 + iη
θ(−k0) 2πδ(k20 − k2)

θ(k0) 2πδ(k20 − k2) − i

k20 − k2 − iη



+ 2πδ(k20 − k2)nB(|k0|)
�

1 1
1 1

�




,



Integrating out    and        . m mαs



Mass scale: NRQCD
• Smaller scales are put to zero in the 

matching. This means that the thermal 
scales do not affect the result of the 
integration, which yields standard 
NRQCD

• NRQCD is organized as an expansion 
in 1/m
Caswell Lepage PLB167 (1986)
Bodwin Braaten Lepage PRD51 (1995)

m

T

ΛQCD

mαs

mD

mα2
s



Mass scale: NRQCD
m

T

ΛQCD

mαs

mD

mα2
s

...    ...   ... ...

...    ...   ... ...

LNRQCD = LYM + Llight + ψ†
�
iD0 +

D2

2m
+ . . .

�
ψ + χ†(iD0 −

D2

2m
+ . . .)χ+ . . .

Caswell Lepage PLB167 (1986)
Bodwin Braaten Lepage PRD51 (1995)



Relative momentum scale: pNRQCD

m

T

ΛQCD

mαs

mD

mα2
s

+ + ...

...    ...   ...

+ ...++ ...

+ + ...

...    ...   ...

+ ...++ ...

1
E − p2/m− V (r)

Pineda Soto Nucl. Phys. Proc. Suppl. 64(1998)
Brambilla Pineda Soto Vairo NPB566 (2000)



Weakly coupled pNRQCD

• Degrees of freedom:        states with energy                          
and momentum                                                                
Singlet and octet color states

• US gluons with energy/momentum

• Expansion in       ,         and 

• Potentials are Wilson coefficients, receive contributions 
from all scales higher than the energy

QQ
p � mv

E ∼ ΛQCD,mv2

� mv

r1
m

αs

LpNRQCD = LYM + Llight +Tr

�
S
†
[i∂0 −Hs] S + O

†
[iD0 −Ho] O

�

+VA Tr
�
O

†r · gE S + S
†r · gEO

�
+

VB

2
Tr

�
O

†r · gEO+O
†
Or · gE

�
+ . . .



Contribution to the spectrum
• Power-counting in the singlet Hamiltonian

Hs =
p2

m
− CF

αs

r
+O(mα3

s )



Contribution to the spectrum
• Power-counting in the singlet Hamiltonian

• Solve the singlet EOM (Schrödinger Eq.) with this 
Hamiltonian and obtain the Coulomb levels

Hs =
p2

m
− CF

αs

r
+O(mα3

s )

En = −mC2
Fα

2
s

4n2
=

1

ma20n
2
, a0 ≡ 2

mCFαs



Contribution to the spectrum
• Power-counting in the singlet Hamiltonian

• Solve the singlet EOM (Schrödinger Eq.) with this 
Hamiltonian and obtain the Coulomb levels

• Treat further terms in the expansion in QM perturbation 
theory, obtaining the                      contributions to the 
spectrum from this scale
Brambilla Pineda Soto Vairo PLB470 (1999) Kniehl Penin NPB563 
(1999) Kniehl Penin Smirnov Steinhauser NPB635 (2002)
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Contribution to the spectrum
• Power-counting in the singlet Hamiltonian

• Solve the singlet EOM (Schrödinger Eq.) with this 
Hamiltonian and obtain the Coulomb levels

• Treat further terms in the expansion in QM perturbation 
theory, obtaining the                      contributions to the 
spectrum from this scale
Brambilla Pineda Soto Vairo PLB470 (1999) Kniehl Penin NPB563 
(1999) Kniehl Penin Smirnov Steinhauser NPB635 (2002)

• IR divergences manifest themselves at 

Hs =
p2

m
− CF

αs

r
+O(mα3

s )

En = −mC2
Fα

2
s

4n2
=

1

ma20n
2
, a0 ≡ 2

mCFαs

mα3
s −mα5

s

mα5
s



Divergent contributions to the spectrum

Scale Vacuum Thermal

/mαs ∼ mα5
s
1

�IR

T

mα2
s



Integrating out the temperature



pNRQCDHTL
• Integrating out the temperature brings us to a 

new EFT called pNRQCDHTL

• In this EFT modes with energy and momenta of 
the order of the temperature are no longer 
present. This amounts to:

• Hard Thermal Loop (HTL) resummation in the 
gauge and light quark sectors
Braaten Pisarski PRD45 (1992)

• Thermal modifications to the potentials in the 
singlet and octet sector

• This EFT and its matching coefficients are 
independent of the hierarchy of low-lying scales

m

T

ΛQCD

mαs

mD

mα2
s



The pNRQCDHTL Lagrangian

• The new matching coefficients in the singlet and octet sectors 
have to be computed by matching pNRQCD to pNRQCDHTL

• We only do this for the singlet sector, which is the only one 
relevant for the spectrum at our accuracy

• In the matching procedure we have to single out the 
contribution from the scale T: this will be achieved by 
appropriate expansions in E/T and mD/T

LpNRQCD
HTL

= LHTL +Tr

�
S
†
[i∂0 −Hs − δVs] S + O

†
[iD0 −Ho − δVo] O

�

+Tr
�
O

†r · gE S + S
†r · gEO

�
+

1

2
Tr

�
O

†r · gEO+O
†
Or · gE

�
+ . . .



Matching pNRQCD to pNRQCDHTL

• The leading contribution to        comes from the dipole 
vertices

It gives rise to a correction to the potential and to the 
spectrum

• Subleading contributions come from the radiative correction 
to that diagram

It gives rise to an imaginary part, corresponding to a 
thermal width. The phenomenon is called Landau damping

δVs
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Matching pNRQCD to pNRQCDHTL

• The leading contribution to        comes from the dipole 
vertices

δVs

∼ r
i

�
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D
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(2π)D
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�
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Matching pNRQCD to pNRQCDHTL

• The leading contribution to        comes from the dipole 
vertices

δVs

−ig
2
CF

D − 2

D − 1
r
i
µ
4−D

�
d
D
k

(2π)D
i

E −Ho − k0 + iη
k
2
0

�
i

k
2
0 − k2 + iη

+ 2πδ
�
k
2
0 − k

2
�
nB (|k0|)

�
r
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Matching pNRQCD to pNRQCDHTL
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vertices
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i
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4−D

�
d
D
k

(2π)D
i

E −Ho − k0 + iη
k
2
0

�
i

k
2
0 − k2 + iη

+ 2πδ
�
k
2
0 − k

2
�
nB (|k0|)

�
r
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• The octet propagator must be expanded in k0 ∼ T � (E −Ho)

∼ r
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Matching pNRQCD to pNRQCDHTL

• The leading contribution to        comes from the dipole 
vertices

δVs

−ig
2
CF

D − 2

D − 1
r
i
µ
4−D

�
d
D
k

(2π)D
i

E −Ho − k0 + iη
k
2
0

�
i

k
2
0 − k2 + iη

+ 2πδ
�
k
2
0 − k

2
�
nB (|k0|)

�
r
i

• The octet propagator must be expanded in

• The vacuum part then yields a series of scaleless 
integrals

• In the thermal part the linear and cubic terms (in the 
energy) contribute within our accuracy, whereas the 
quadratic term vanishes in D.R.

k0 ∼ T � (E −Ho)

∼ r
i

�
d
D
k

(2π)D
i

E −Ho − k0 + iη

�
k
2
0 D

(0)
ii + k

2
D

(0)
00

�
r
i



• The correction to the potential from the temperature scale is, when 

• Both the real and the imaginary part are IR divergent; the 
divergences cancel in the related physical observables, the spectrum 
and the width, against UV divergences from some lower scale

Results: the potential
T � mαs

δVs =
π

9
NcCF α2

s T
2 r +

2π

3m
CF αs T

2 +
αsCF IT

3π

�
−N3

c

8

α3
s

r
− (N2

c + 2NcCF )
α2
s

mr2

+4(Nc − 2CF )
παs

m2
δ3(r) +Nc

αs

m2

�
∇2

r,
1

r

��

−3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α2

s r
2 T 3

+i

�
CF

6
αs r

2 T m2
D

�
−2

�
+ γE + lnπ − ln

T 2

µ2
+

2

3
− 4 ln 2− 2

ζ �(2)

ζ(2)

�

+
4π

9
ln 2 NcCF α2

s r
2 T 3

�

m2
D =

g2T 2

3

�
N +

nf

2

�
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Results: spectrum and width
• The corresponding correction to the spectrum is

• The width is

This correction to the potential can be used for T ! E,mD no matter what the relative

size between E and mD is.

Analogously, the total contribution to the energy levels coming from the scale T is

δE(T )
n,l =

π

9
NcCF α2

s T
2a0
2
(3n2 − l(l + 1)) +

2π

3m
CF αs T

2

+
EnITα3

s

3π

{

4C3
F δl0
n

+NcC
2
F

(

8

n(2l + 1)
−

1

n2
−

2δl0
n

)

+
2N2

cCF

n(2l + 1)
+

N3
c

4

}

+

(

−
3

2
ζ(3)CF

αs

π
T m2

D +
2

3
ζ(3)NcCF α2

s T
3

)

a20n
2

2

[

5n2 + 1− 3l(l + 1)
]

.

(4.26)

The first and the second lines originate from the diagram in Fig. 1, and correspond to

the linear and cubic terms in the expansion (4.4). The last line originates from the gluon

self-energy diagram in Fig. 2, which also gives the full contribution of the scale T to the

width:

Γ(T )
n,l = Γ(2 loops)

n,l . (4.27)

5. Contribution to the spectrum from the scale E

After having integrated out the temperature in the previous section, many different scales

(E, mD, ΛQCD, . . .) still remain dynamical in pNRQCDHTL. In our hierarchy, the binding

energy is much larger than the Debye mass and ΛQCD is smaller than all other scales. Our

purpose is to compute the correction to the spectrum and the width coming from the scales

E and mD. This is achieved by computing loop corrections to the singlet propagator in

pNRQCDHTL. We recall that the gauge sector of pNRQCDHTL coincides with the Hard

Thermal Loop effective Lagrangian. The longitudinal and transverse gluon propagators in

Coulomb gauge are given in the Hard Thermal Loop effective theory by [31]1

DR,A
00 (k0, k) =

i

k2 +m2
D

(

1−
k0
2k

ln
k0 + k ± iη

k0 − k ± iη

) , (5.1)

and

DR,A
ij (k0, k) =

(

δij −
kikj
k2

)

∆R,A(k0, k) , (5.2)

respectively, where

∆R,A(k0, k) =
i

k20 − k2 −
m2

D

2

(

k20
k2

− (k20 − k2)
k0
2k3

ln

(

k0 + k ± iη

k0 − k ± iη

))

± i sgn(k0) η

,

(5.3)

1The transverse propagator given there contains a misprint: a factor of p0/(2p) should be multiplying

the logarithm in Eq. (27), as follows from the transverse HTL self-energy given in Eq. (17) of the same

paper.
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where ζ is the Riemann zeta function (ζ(2) = π2/6) and the Debye mass mD is defined as

m2
D =

g2T 2

3
(Nc + TF nf ) . (4.22)

Equation (4.21) contains an imaginary part. It comes from the imaginary part of the

gluon self-energy, which is related to the Landau-damping phenomenon, i.e. the scattering

of particles carrying momenta of order T in the thermal bath with virtual, space-like

longitudinal gluons. Furthermore, the imaginary part is infrared divergent. In the EFT

framework, this divergence has to be cancelled by an opposite ultraviolet divergence coming

from a lower scale. In the following section, we will indeed show that the same diagram,

when integrated over momenta of the order of the binding energy, yields the desired UV

divergence. Finally, we remark that the result in Eq. (4.21) comes from dimensionally

regularizing only the integral over k while keeping the thermal part of the gluon self energy,

which is finite, in exactly four spacetime dimensions. Using the same regularization when

calculating the contribution coming from the binding-energy scale guarantees that the

final result for the spectrum is finite and scheme independent. This is not the case for the

potential, however, whose expression depends on the adopted scheme.

The contributions to the energy levels and to the thermal width can be obtained

easily from Eq. (4.21) by using the expectation value for r2 on Coulombic states, i.e.
〈

r2
〉

n,l
= a20n

2
[

5n2 + 1− 3l(l + 1)
]

/2:

δE(2 loops)
n,l =

[

−
3

4
ζ(3)CF

αs

π
T m2

D +
ζ(3)

3
NcCF α2

s T
3

]

a20n
2
[

5n2 + 1− 3l(l + 1)
]

, (4.23)

Γ(2 loops)
n,l =

[

−
CF

6
αsTm

2
D

(

−
2

ε
+ γE + lnπ − ln

T 2

µ2
+

2

3
− 4 ln 2− 2

ζ ′(2)

ζ(2)

)

−
4π

9
ln 2 NcCF α2

s T
3

]

a20n
2
[

5n2 + 1− 3l(l + 1)
]

. (4.24)

4.1 Summary

Summing up Eqs. (4.14), (4.19) and (4.21) we obtain the thermal correction to the potential

in pNRQCDHTL up to terms whose contribution to the spectrum is smaller than mα5
s :

δVs =
π

9
NcCF α2

s T
2 r +

2π

3m
CF αs T

2 +
αsCF IT

3π

[

−
N3

c

8

α3
s

r
− (N2

c + 2NcCF )
α2
s

mr2

+4(Nc − 2CF )
παs

m2
δ3(r) +Nc

αs

m2

{

∇2
r
,
1

r

}]

−
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α2

s r
2 T 3

+i

[

CF

6
αs r

2 T m2
D

(

−
2

ε
+ γE + lnπ − ln

T 2

µ2
+

2

3
− 4 ln 2− 2

ζ ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α2

s r
2 T 3

]

, (4.25)

where the first two terms come from the linear part of Fig. 1, the terms in square brackets

come from the cubic term and the last three lines originate from the diagram in Fig. 2.
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Calculating the contribution from the 
energy scale



Calculating at the energy scale
• Since we have reached the binding 

energy scale we cannot proceed further 
with EFTs in the heavy quark-antiquark 
sector

• We thus calculate the contributions to 
the spectrum and the width within 
pNRQCDHTL

• We thus have to use the HTL-resummed 
propagators

• We employ the expansions 

m

T

ΛQCD

mαs

mD

mα2
s

T � mα2
s � mD



The calculation
• Only the leading order diagram contributes within our 

accuracy
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The calculation
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The calculation
• Only the leading order diagram contributes within our 

accuracy

• This diagram introduces a second source of imaginary parts 
! thermal width. It is the singlet-to-octet decay width

• The calculation is quite involved, requiring expansions in 
the propagators and in the Bose distribution
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The calculation
• Only the leading order diagram contributes within our 

accuracy

• This diagram introduces a second source of imaginary parts 
! thermal width. It is the singlet-to-octet decay width

• The calculation is quite involved, requiring expansions in 
the propagators and in the Bose distribution

• UV divergences appear and cancel the IR divergencies from 
higher scales

∼ r
i

�
d
D
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(2π)D
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E −Ho − k0 + iη
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Divergent contributions to the spectrum

Scale Vacuum Thermal

/mαs ∼ mα5
s
1

�IR

T

mα2
s

∼ −mα5
s
1

�IR
∼ mα5

s

�
1

�IR
− 1

�UV

�
,

∼ −mα5
s

1

�UV
∼ mα5

s
1

�UV



Summary and conclusions



The spectrum
• The contribution of the thermal medium only to the spectrum is
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The spectrum
• The contribution of the thermal medium only to the spectrum is
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• The leading terms thus indicate that the mass of the bound state increases 
quadratically with the temperature. 

• Up to this order the thermal shift to the spectrum is independent of the 
spin



The thermal width
• The contribution of the thermal medium to the width is
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The thermal width
• The contribution of the thermal medium to the width is

• Two sources of decay: singlet-to-octet thermal breakup and Landau 
damping
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The thermal width
• The contribution of the thermal medium to the width is
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The thermal width
• The contribution of the thermal medium to the width is
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• Two sources of decay: singlet-to-octet thermal breakup and Landau 
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The thermal width
• The contribution of the thermal medium to the width is

mα5
s ∼

{mα6
s
T 3

E3
∼

• Two sources of decay: singlet-to-octet thermal breakup and Landau 
damping

• In our hiearchy the former is larger than the latter

• Up to this order the width as well is independent of the spin
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Conclusions
• The method: we have shown how to construct a 

series of EFT to integrate out in succession the many 
scales that characterize a non-relativistic bound state 
at finite temperature

• We have obtained the contribution to the singlet 
potential from the scale T, when

• Back to the structure: we have obtained the 
contribution of the thermal bath to the spectrum and 
the width of heavy quarkonia, in a scale setup that 
can be relevant for the ground state of bottomonium

T � mαs




