Electromagnetic Processes in Few-Nucleon Systems at Low Energies

- Nuclear EM currents in χEFT up to one loop
- Constraining the LEC's
- Predictions for radiative captures in A=3 and 4 systems
- Relativity constraints on chiral potentials
- Outlook

In collaboration with:

- L. Girlanda S. Pastore M. Viviani
- J. Goity A. Kievsky L. Marcucci R.B. Wiringa

<u>References:</u>

Pastore et al. PRC80, 034004 (2009); Girlanda et al. PRL105, 232502 (2010)

Work in Nuclear χEFT : a Partial Listing

Since Weinberg's papers (1990–92), nuclear χ EFT has developed into an intense field of research. A very incomplete list:

- *NN* and *NNN* potentials:
 - van Kolck et al. (1994–96)
 - Kaiser, Weise et al. (1997–98)
 - Glöckle, Epelbaum, Meissner et al. (1998–2005)
 - Entem and Machleidt (2002–03)
- Currents and nuclear electroweak properties:
 - Rho, Park et al. (1996–2009), hybrid studies in A=2–4
 - Meissner et al. (2001), Kölling et al. (2009–2010)
 - Phillips (2003), deuteron static properties and f.f.'s

Lots of work in pionless EFT too ...

<u>Preliminaries</u>

• Time-ordered perturbation theory (TOPT):

$$-\frac{\hat{\mathbf{e}}_{\mathbf{q}\lambda}}{\sqrt{2\,\omega_q}} \cdot \mathbf{j} = \langle N'N' \mid T \mid NN; \gamma \rangle$$
$$= \langle N'N' \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\,\eta} H_1\right)^{n-1} \mid NN; \gamma \rangle$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots$$
, and $T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$

- Irreducible and recoil-corrected reducible contributions retained in T expansion
- A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives (momenta) and β_i = number of π 's at each vertex

- These depend on the proton and neutron μ 's ($\mu_p = 2.793 \,\mu_N$ and $\mu_n = -1.913 \,\mu_N$), g_A , and F_{π}
- One-loop corrections to one-body current are absorbed into μ_N and $\langle r_N^2 \rangle$

$N^{3}LO(eQ)$ Corrections

• One-loop corrections:

• Tree-level current with one $e Q^2$ vertex from $\mathcal{L}_{\gamma \pi N}$ of Fettes etal. (1998), involving 3 LEC's (~ $\gamma N \Delta$ and $\gamma \rho \pi$ currents) :

• Contact currents

from i) minimal substitution in the interactions involving ∂N (7 LEC's determined from strong-interaction sector) and ii) non-minimal couplings (2 LEC's)

<u>Technical Issues I: Recoil Corrections at N²LO</u>

• N^2LO reducible and irreducible contributions in TOPT

• Recoil corrections to the reducible contributions obtained by expanding in powers of $(E_i - E_I)/\omega_{\pi}$ the energy denominators

$$E_{I} \stackrel{\text{finite}}{\longrightarrow} = v^{\pi} \left(1 + \frac{E_{i} - E_{I}}{2\omega_{\pi}} \right) \frac{1}{E_{i} - E_{I}} \mathbf{j}^{\text{LO}}$$

$$\int \frac{\mathbf{j}^{\text{LO}}}{\mathbf{j}^{\text{LO}}} = -\frac{v^{\pi}}{2\omega_{\pi}} \mathbf{j}^{\text{LO}}$$

• Recoil corrections to reducible diagrams cancel irreducible contribution

<u>Technical Issues II: Recoil Corrections at N³LO</u>

• Reducible contributions

$$\mathbf{j}_{\text{red}} = \int v^{\pi}(\mathbf{q}_2) \frac{1}{E_i - E_I} \mathbf{j}^{\text{NLO}}(\mathbf{q}_1)$$
$$-2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Irreducible contributions

$$\mathbf{j}_{\text{irr}} = 2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \\ + 2 \int \frac{\omega_1^2 + \omega_2^2 + \omega_1 \, \omega_2}{\omega_1 \, \omega_2(\omega_1 + \omega_2)} \left[V_{\pi NN}(2, \mathbf{q}_1), V_{\pi NN}(2, \mathbf{q}_2) \right]_{-} \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Partial cancellations between recoil corrections to reducible diagrams and irreducible contributions

LS-equation regulator ~ $\exp(-Q^4/\Lambda^4)$ with Λ =500, 600, and 700 MeV (cutting off momenta $Q \gtrsim 3-4 m_{\pi}$)

Comparing to Park et al. (1996) and Kölling et al. (2009)

- Expressions for two-body currents (and potential, of course) at one loop in agreement with those of Bonn group (2009) derived via TOPT and the unitary transformation method
- Park *et al.* (1996) use covariant perturbation theory, but obtain different isospin structure for these loop currents: differences in treatment of box diagrams

<u>EM Observables at N^3LO </u>

- Pion loop corrections and (minimal) contact terms known
- Five LEC's: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

- $d_2^V/d_1^V = 1/4$ assuming Δ -resonance saturation
- Three-body currents at N³LO vanish:

Fitted LEC Values

- LEC's—in units of Λ —corresponding to $\Lambda = 500-700$ MeV for AV18/UIX (N3LO/N2LO)
- Isoscalar d^S (c^S) and isovector d_1^V (c^V) associated with higher-order $\gamma \pi N$ (contact) currents

Λ	$\Lambda^2 d^S \times 10^2$	$\Lambda^4 c^S$	$\Lambda^2 d_1^V$	$\Lambda^4 c^V$	
500	-8.85(-0.225)	-3.18(-2.38)	5.18(5.82)	-11.3 (-11.4)	
600	-2.90 (9.20)	-7.10(-5.30)	6.55(6.85)	-12.9(-23.3)	
700	6.64~(20.4)	-13.2 (-9.83)	8.24 (8.27)	-1.70 (-46.2)	

The nd and n^{3} He Radiative Captures

• Suppressed M1 processes:

	$\sigma_{ m exp}({ m mb})$
${}^{1}\mathrm{H}(n,\gamma){}^{2}\mathrm{H}$	334.2(5)
$^{2}\mathrm{H}(n,\gamma)^{3}\mathrm{H}$	0.508(15)
${}^{3}\mathrm{He}(n,\gamma){}^{4}\mathrm{He}$	0.055(3)

- The ³H and ⁴He bound states are approximate eigenstates of the one-body *M*1 operator, *e.g.* $\hat{\mu}(IA) |^{3}H\rangle \simeq \mu_{p} |^{3}H\rangle$ and $\langle nd | \hat{\mu}(IA) |^{3}H\rangle \simeq 0$ by orthogonality
- A=3 and 4 radiative (and weak) captures very sensitive to
 i) small components in the w.f.'s and ii) many-body terms in the electro(weak) currents (80-90% of cross section!)

Wave Functions: Recent Progress

- 3 and 4 bound-state w.f.'s and 2+1 continuum routine by now
- Challenges with 3+1 continuum:
 - 1. Coupled-channel nature of scattering problem: n-³He and p-³H channels both open
 - 2. Peculiarities of ⁴He spectrum (see below): hard to obtain numerically converged solutions

• Major effort by several groups^{*}: both singlet and triplet n-³He scattering lengths in good agreement with data

^{*}Deltuva and Fonseca (2007); Lazauskas (2009); Viviani *et al.* (2010)

	Triplet Scattering Length a_1 (fm)
Method	AV18	AV18/UIX
HH	3.56 - i 0.0077	3.39 - i 0.0059
RGM	3.45 - i 0.0066	3.31 - i 0.0051
FY	3.43 - i 0.0082	3.23 - i 0.0054
AGS	3.51 - i 0.0074	
R-matrix	3.29 - i 0.0012	
EXP	3.28(5) - i0.001(2)	
EXP	3.36(1)	
EXP	3.48(2)	

Singlet scattering length a_0 (harder to calculate!) also in good agreement with experiment

<i>n</i> - <i>d</i> radiative capture cross section [*] in μ b: $\sigma_{nd}^{EXP} = 508(15) \ \mu$ b							
	Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO	
	500	231	343	322	272	487	
	600	231	369	348	306	491	
	700	231	385	362	343	493	

n-³He radiative capture cross section^{*} in μ b: $\sigma_{n}^{\text{EXP}} = 55(4) \ \mu$ b

Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO
500	15.2	5.95	0.91	1.36	48.3
600	15.2	10.2	2.87	0.04	53.0
700	15.2	11.5	3.56	0.38	56.6

*N3LO/N2LO potentials and HH wave functions

An aside: relativity constraints on v^{LO}

		Cont	tact Lagrangian at Q^2
		Ordóñe	z et al., PRC53, 2086 (1996)
		<i>O</i> ₁	$(N^{\dagger} \overrightarrow{\nabla} N)^2 + \text{h.c.}$
		O_2	$(N^{\dagger} \overrightarrow{\nabla} N) \cdot (N^{\dagger} \overleftarrow{\nabla} N)$
		<i>O</i> ₃	$(N^{\dagger}N)(N^{\dagger}\overrightarrow{\nabla}^{2}N) + \mathrm{h.c.}$
		O_4	$i (N^{\dagger} \overrightarrow{\nabla} N) \cdot (N^{\dagger} \overleftarrow{\nabla} \times \boldsymbol{\sigma} N) + \text{h.c.}$
		O_5	$i(N^{\dagger}N)(N^{\dagger}\overleftarrow{oldsymbol{ abla}}\cdotoldsymbol{\sigma} imes\overrightarrow{oldsymbol{ abla}}N)$
		06	$i(N^{\dagger}oldsymbol{\sigma} N)\cdot(N^{\dagger}\overleftarrow{oldsymbol{ abla}} imes\overrightarrow{oldsymbol{ abla}}N)$
		07	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N) + \mathrm{h.c.}$
		08	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla^{k}}N)(N^{\dagger}\sigma^{k}\overrightarrow{\nabla^{j}}N) + \text{h.c.}$
		<i>O</i> 9	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla^{k}}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla^{k}}N) + \text{h.c.}$
		O ₁₀	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{ abla}}N)(N^{\dagger}\overleftarrow{\boldsymbol{ abla}}\cdot\boldsymbol{\sigma}N)$
		O ₁₁	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla^{k}}N)(N^{\dagger}\overleftarrow{\nabla^{j}}\sigma^{k}N)$
		O_{12}	$(N^{\dagger}\sigma^{j}\overline{\nabla^{k}}N)(N^{\dagger}\overline{\nabla^{k}}\sigma^{j}N)$
		O ₁₃	$(N^{\dagger} \overleftarrow{\nabla} \cdot \boldsymbol{\sigma} \overrightarrow{\nabla^{j}} N)(N^{\dagger} \sigma^{j} N) + \text{h.c.}$
		O ₁₄	$2(N^{\dagger}\overleftarrow{\boldsymbol{ abla}}\sigma^{j}\cdot\overrightarrow{\boldsymbol{ abla}}N)(N^{\dagger}\sigma^{j}N)$
$v^{\mathrm{CT2}}(\mathbf{k},\mathbf{K})$	=	$C_1 k^2 + C_2$	$\mathbf{\sigma}_{2} \mathbf{K}^{2} + (\mathbf{C_{3}} \mathbf{k}^{2} + \mathbf{C_{4}} \mathbf{K}^{2}) \mathbf{\sigma}_{1} \cdot \mathbf{\sigma}_{2} + i \mathbf{C}_{5} \frac{\mathbf{\sigma}_{1} + \mathbf{\sigma}_{2}}{2} \cdot \mathbf{K} \times \mathbf{k}$
	+	$C_6 \sigma_1 \cdot \mathbf{k} \sigma_1$	$\mathbf{r}_2 \cdot \mathbf{k} + C_7 \mathbf{\sigma}_1 \cdot \mathbf{K} \mathbf{\sigma}_2 \cdot \mathbf{K}$
$v_{\mathbf{P}}^{\mathrm{CT2}}(\mathbf{k},\mathbf{K})$	=	$i C_1^* \frac{\sigma_1 - \sigma_1}{2}$	$\frac{\boldsymbol{\sigma}_2}{-} \cdot \mathbf{P} \times \mathbf{k} + \frac{\boldsymbol{C_2^*}}{2} \left(\boldsymbol{\sigma}_1 \cdot \mathbf{P} \ \boldsymbol{\sigma}_2 \cdot \mathbf{K} - \boldsymbol{\sigma}_1 \cdot \mathbf{K} \ \boldsymbol{\sigma}_2 \cdot \mathbf{P} \right)$
	+	$(C_3^* + C_4^*)$	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) P^2 + \boldsymbol{C_5^*} \boldsymbol{\sigma}_1 \cdot \mathbf{P} \boldsymbol{\sigma}_2 \cdot \mathbf{P}$

Actually, 2 of the O_i 's in original set are redundant ...

Relativity Constraints

Girlanda et al., PRC81, 034005 (2010)

- Reparametrization invariance: only 7 independent combinations of O_i 's [Epelbaum *et al.*, PRC**65**, 044001 (2002)]
- What about the other 5 combinations?

Explore constraints that relativity imposes at order Q^2 in two ways:

- Write down the most general contact \mathcal{L} up to Q^2 and carry out its NR reduction
- Enforce the CR's between the generators *H* and **K** directly in the NR theory within a consistent power counting scheme

 \underline{Both} lead to the same result:

$$C_1^* = \frac{C_S - C_T}{4m^2} , \ C_2^* = \frac{C_T}{2m^2} , \ C_3^* = -\frac{C_S}{4m^2} , \ C_4^* = -\frac{C_T}{4m^2} , \ C_5^* = 0$$

and $v_{\mathbf{P}}^{\mathrm{LO}}$ should be included in calculations of A > 2 properties

NR Reduction I

Building blocks:

$$(\overline{\psi}\,\overrightarrow{i\partial}^{\alpha}\,\overrightarrow{i\partial}^{\beta}\cdots\Gamma_{A}\,\psi)\,\partial^{\lambda}\,\partial^{\mu}\cdots(\overline{\psi}\,\overrightarrow{i\partial}^{\sigma}\,\overrightarrow{i\partial}^{\tau}\cdots\Gamma_{B}\,\psi)/(2m)^{N_{d}}$$

 ∂ on whole bilinear is $\sim Q$; $\overleftrightarrow{\partial}$ inside bilinear is $\sim Q^0$ and, in principle, any number of $\overleftrightarrow{\partial}$ is allowed, however,

i) no two Lorentz indices can be contracted within a bilinearii) some of the most problematic terms of the type

$$(\overline{\psi}\,\overrightarrow{i\partial}^{\mu_1}\,\overrightarrow{i\partial}^{\mu_2}\cdots\overrightarrow{i\partial}^{\mu_n}\,\Gamma^{\alpha}_A\,\psi)\,(\overline{\psi}\,\overrightarrow{i\partial}_{\mu_1}\,\overrightarrow{i\partial}_{\mu_2}\cdots\overrightarrow{i\partial}_{\mu_n}\,\Gamma_{B\,\alpha}\,\psi)/(2m)^{2n}$$

do not introduce any new structures for n > 1, since

$$(\overline{u}_3 \,\Gamma_A^{\alpha} \, u_1) \, (\overline{u}_4 \,\Gamma_{B\,\alpha} \, u_2) \, [(p_1 + p_3) \cdot (p_2 + p_4)]^n / (2m)^{2n}$$

and to order Q^2 the $[\ldots]$ can be expanded as

1 + n
$$\left[\mathbf{p}_{1}^{2} + \mathbf{p}_{2}^{2} + \mathbf{p}_{3}^{2} + \mathbf{p}_{4}^{2} - (\mathbf{p}_{1} + \mathbf{p}_{3}) \cdot (\mathbf{p}_{2} + \mathbf{p}_{4})\right] / (4m^{2})$$

NR Reduction II

- 36 (hermitian) C- and P-invariant terms
- NR reduction and use of EOM to remove time derivatives lead to 2 leading terms (Q^0) , accompanied by specific $1/m^2$ corrections, and 7 subleading ones (Q^2)

$$\mathcal{L} = -\frac{1}{2}C_{S}\left[O_{S} + \frac{1}{4m^{2}}(O_{1} + O_{3} + O_{5} + O_{6})\right]$$

$$-\frac{1}{2}C_{T}\left[O_{T} - \frac{1}{4m^{2}}\left(O_{5} + O_{6} - O_{7} + O_{8} + 2O_{12} + O_{14}\right)\right]$$

$$-\frac{1}{2}C_{1}(O_{1} + 2O_{2}) + \frac{1}{8}C_{2}(2O_{2} + O_{3}) - \frac{1}{2}C_{3}(O_{9} + 2O_{12})$$

$$-\frac{1}{8}C_{4}(O_{9} + O_{14}) + \frac{1}{4}C_{5}(O_{6} - O_{5}) - \frac{1}{2}C_{6}(O_{7} + 2O_{10})$$

$$-\frac{1}{16}C_{7}(O_{7} + O_{8} + 2O_{13})$$

Poincaré Algebra Constraints

Girlanda et al., PRC81, 034005 (2010)

•
$$H = H_0 + H_I$$
 and $\mathbf{K} = \mathbf{K}_0 + \mathbf{K}_I$

 $\left[K^{i}, K^{j}\right] = -i \,\epsilon^{ijk} J^{k} = \left[K_{0}^{i}, K_{0}^{j}\right] \qquad [\mathbf{K}, H] = i \,\mathbf{P} = [\mathbf{K}_{0}, H_{0}]$

• Power counting—follows from $b_s(\mathbf{p})$ and $b_s^{\dagger}(\mathbf{p}) \sim Q^{-3/2}$:

$$\mathbf{K}_{0} = \mathbf{K}_{0}^{(-1)} + \mathbf{K}_{0}^{(1)} + \dots \qquad H_{0} = H_{0}^{(0)} + H_{0}^{(2)} + \dots$$
$$\mathbf{K}_{I} = \mathbf{K}_{I}^{(2)} + \mathbf{K}_{I}^{(4)} + \dots \qquad H_{I} = H_{I}^{(3)} + H_{I}^{(5)} + \dots$$

• Constraints arise on H_I and \mathbf{K}_I ; at order Q^2

$$H_I^{(5)} \sim \frac{C_S}{8m^2} \int d\mathbf{x} \left(O_1 + O_3 + O_5 + O_6 \right) \\ - \frac{C_T}{8m^2} \int d\mathbf{x} \left(O_5 + O_6 - O_7 + O_8 + 2O_{12} + O_{14} \right)$$

Boost Corrections to Potentials

• Well known result¹, v rest-frame potential:

$$\delta v(\mathbf{P}) = -\frac{P^2}{8 m^2} v + \frac{i}{8 m^2} \left[\mathbf{P} \cdot \mathbf{r} \, \mathbf{P} \cdot \mathbf{p} \,, \, v \right] \\ + \frac{i}{8 m^2} \left[(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \times \mathbf{P} \cdot \mathbf{p} \,, \, v \right]$$

• Should be included in χEFT calculations-comparable to three-body force contributions

Expectation values in MeV^2

	T	v(NN)	V(NNN)	$\delta v(NN)$
$^{3}\mathrm{H}$	48.7	-55.9	-1.21	0.34
$^{4}\mathrm{He}$	105.0	-127.4	-5.43	1.76

¹Krajcik and Foldy (1974); Friar (1975); Carlson *et al.* (1993)

²Forest *et al.* (1995); for effects on A=3 continuum, see Witala *et al.* (2008)

<u>Outlook</u>

- An analysis of the parity-violating potential at N²LO (Q) has just been completed: determined by h_{π}^{1} plus 5 contact terms
- Include Δ -isobar degrees of freedom
- Study effects of boost corrections to chiral potentials in A = 3and 4 bound- and scattering-state properties
- EM structure of light nuclei: d(e, e')pn at threshold, charge and magnetic form factors, ...