Functional RG for few-body systems

Michael C Birse
The University of Manchester

Review of results from:
Schmidt and Moroz, arXiv:0910.4586
Krippa, Walet and Birse, arXiv:0911.4608
Krippa, Walet and Birse, arXiv:1011.5852

Background

Ideas of effective field theory and renormalisation group

- well-developed for few-nucleon and few-atom systems
- rely on separation of scales
- Wilsonian RG used to derive power counting
\rightarrow classify terms as perturbations around fixed point (or limit cycle)

Background

Ideas of effective field theory and renormalisation group

- well-developed for few-nucleon and few-atom systems
- rely on separation of scales
- Wilsonian RG used to derive power counting
\rightarrow classify terms as perturbations around fixed point (or limit cycle)
Many unsuccessful attempts to extend to dense matter
- but no separation of scales
- other EFT's for interacting Fermi systems exist (Landau Fermi liquid, Ginsburg-Landau theory)
- but parameters have no simple connection to underlying forces

EFTs based on contact interactions

- not well suited for standard many-body methods
\rightarrow switch to lattice simulation [Lee et a/] or look for some more heuristic approach
- based on field theory
- can be matched onto EFT's for few-body systems (input from 2- and 3-body systems in vacuum)

Try functional renormalisation group ("exact" RG)

- based on Wilsonian RG approach to field theories
- successfully applied to various systems in for condensed-matter physics to quantum gravity
[version due to Wetterich (1993)]

Outline

- Functional RG
- Spin- $\frac{1}{2}$ fermions
- 4-body systems: dimer-dimer scattering
- Unitary limit: scaling
- Summary

Functional RG

Version based on the effective action $\Gamma\left[\phi_{c}\right]$

- start from generating function $W[J]$ defined by

$$
e^{i W[J]}=\int D \phi e^{i\left(S[\phi]+J \cdot \phi-\frac{1}{2} \phi \cdot R \cdot \phi\right)}
$$

- $R(q, k)$: regulator function
suppresses modes with momenta $q \lesssim k$ ("cutoff scale")
- only modes with $q \gtrsim k$ integrated out
- $W[J]$ becomes full generating function as $k \rightarrow 0$

Legendre transform \rightarrow effective action

$$
\Gamma\left[\phi_{c}\right]=W[J]-J \cdot \phi_{c}+\frac{1}{2} \phi_{c} \cdot R \cdot \phi_{c} \quad \text { where } \quad \phi_{c}=\frac{\delta W}{\delta J}
$$

(generating function for 1-particle-irreducible diagrams)

「 evolves with scale k according to

$$
\partial_{k} \Gamma=-\frac{i}{2} \operatorname{Tr}\left[\left(\partial_{k} R\right)\left(\Gamma^{(2)}-R\right)^{-1}\right] \quad \text { where } \quad \Gamma^{(2)}=\frac{\delta^{2} \Gamma}{\delta \phi_{c} \delta \phi_{c}}
$$

$\left(\Gamma^{(2)}-R\right)^{-1}$: propagator of boson in background field ϕ_{c} (one-loop structure but still exact)

Evolution interpolates between "bare" classical action at large scale K and full 1 PI effective action as $k \rightarrow 0$ (thresholds etc ...)

「 evolves with scale k according to

$$
\partial_{k} \Gamma=-\frac{i}{2} \operatorname{Tr}\left[\left(\partial_{k} R\right)\left(\Gamma^{(2)}-R\right)^{-1}\right] \quad \text { where } \quad \Gamma^{(2)}=\frac{\delta^{2} \Gamma}{\delta \phi_{c} \delta \phi_{c}}
$$

$\left(\Gamma^{(2)}-R\right)^{-1}$: propagator of boson in background field ϕ_{c} (one-loop structure but still exact)

Evolution interpolates between "bare" classical action at large scale K and full 1 PI effective action as $k \rightarrow 0$ (thresholds etc ...)

Functional differential equation

- hard/impossible solve in general
\rightarrow work with tructated ansatz for Γ
- local action expanded in powers of derivatives
(cf low-energy EFTs, but don't know a priori if we have a
consistent power counting)

Derivative expansion may be good at starting scale K

- use power counting of EFT to determine relevant terms (or use this RG to find that power counting in scaling regime)
- but no guarantee that it remains good for $k \rightarrow 0$ (can't be for scattering amplitudes at energies above threshold: cuts \rightarrow nonanalytic behaviour)

Derivative expansion may be good at starting scale K

- use power counting of EFT to determine relevant terms (or use this RG to find that power counting in scaling regime)
- but no guarantee that it remains good for $k \rightarrow 0$ (can't be for scattering amplitudes at energies above threshold: cuts \rightarrow nonanalytic behaviour)
\rightarrow need consistency checks: stability against adding extra terms to ansatz stability against changes in form of regulator
- use this to optimise choice of regulator [Litim, Pawlowski]

Two species of fermion
Fermion field: $\psi(x)$ (spin- $\frac{1}{2}$ atoms or neutrons)
Boson "dimer" field: $\phi(x)$ (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

$$
\begin{aligned}
\Gamma[& \left.\psi, \psi^{\dagger}, \phi, \phi^{\dagger} ; k\right] \\
=\int \mathrm{d}^{4} x[& \psi(x)^{\dagger}\left(\mathrm{i} \partial_{0}+\frac{\nabla^{2}}{2 M}\right) \psi(x) \\
& +Z_{\phi}(k) \phi(x)^{\dagger}\left(\mathrm{i} \partial_{0}+\frac{\nabla^{2}}{4 M}\right) \phi(x)-u_{1}(k) \phi(x)^{\dagger} \phi(x) \\
& \left.\quad-g\left(\frac{\mathrm{i}}{2} \phi(x)^{\dagger} \psi(x)^{\mathrm{T}} \sigma_{2} \psi(x)+\mathrm{Hc}\right)\right]
\end{aligned}
$$

$g: A A \rightarrow D$ coupling
$u_{1}(k)$: dimer self-energy (u_{1} / g^{2} : only physical parameter)
$Z_{\phi}(k)$: dimer wave-function renormalisation

Evolution equation

$$
\begin{aligned}
\partial_{k} \Gamma= & +\frac{i}{2} \operatorname{Tr}\left[\left(\partial_{k} \mathbf{R}_{F}\right)\left(\left(\Gamma^{(2)}-\mathbf{R}\right)^{-1}\right)_{F F}\right] \\
& -\frac{i}{2} \operatorname{Tr}\left[\left(\partial_{k} \mathbf{R}_{B}\right)\left(\left(\Gamma^{(2)}-\mathbf{R}\right)^{-1}\right)_{B B}\right]
\end{aligned}
$$

$\Gamma^{(2)}$: matrix of second derivatives of the action (Gorkov-like form: ψ and ψ^{\dagger} as independent variables \rightarrow factors of $\frac{1}{2}$)
"Skeleton" diagram for driving terms in evolution of 2-body parameters

(need to insert $\partial_{k} \mathbf{R}_{F}$ on one internal line)
Expand in powers of energy $\rightarrow \partial_{k} u_{1}, \partial_{k} Z_{\phi}$

3-body sector: AD contact interaction

$$
\Gamma\left[\psi, \psi^{\dagger}, \phi, \phi^{\dagger} ; k\right]=\cdots-\lambda(k) \int d^{4} x \psi^{\dagger}(x) \phi^{\dagger}(x) \phi(x) \psi(x)
$$

Evolution of λ driven by terms corresponding to skeletons

- AD contact interaction
- single-A exchange between dimers (cf Faddeev and STM equations)

4-body sector: DD \rightarrow DD, DD \rightarrow DAA, DAA \rightarrow DAA terms

 [cf Schmidt and Moroz (2009): bosonic case]$$
\begin{aligned}
\Gamma\left[\psi, \psi^{\dagger}, \phi, \phi^{\dagger} ; k\right]=\cdots-\int d^{4} x & {\left[\frac{1}{2} u_{2}(k)\left(\phi^{\dagger} \phi\right)^{2}\right.} \\
& +\frac{1}{4} v(k)\left(\phi^{\dagger 2} \phi \psi^{\mathrm{T}} \psi+\mathrm{H} c\right) \\
& \left.+\frac{1}{4} w(k) \phi^{\dagger} \phi \psi^{\dagger} \psi^{\dagger \mathrm{T}} \psi^{\mathrm{T}} \psi\right]
\end{aligned}
$$

- dimer "breakup" terms allow 3-body physics to feed in properly (cf Faddeev-Yakubovski)
\rightarrow coupled evolution equations for u_{2}, v, w (27 distinct skeletons)

Regulators

- fermions: sharp cutoff

$$
R_{F}(\boldsymbol{q}, k)=\frac{k^{2}-q^{2}}{2 M} \theta(k-q)
$$

- pushes states with $q>k$ up to energy $k^{2} / 2 M$
- nonrelativistic version of "optimised" cutoff [Litim (2001)]
- fastest convergence at this level of truncation
- bosons

$$
R_{B}(\boldsymbol{q}, k)=Z_{\phi}(k) \frac{\left(c_{B} k\right)^{2}-q^{2}}{4 M} \theta\left(c_{B} k-q\right)
$$

- c_{B} : relative scale of boson cutoff
- optimised choice $C_{B}=1$ [cf Pawlowski (2007)] (no mismatch between fermion and boson cutoffs)
Also examined smooth cutoffs - more convenient in dense matter

Initial conditions

As $k \rightarrow \infty$ boson field purely auxiliary

- $Z_{\phi}(k) \rightarrow 0$
- $u_{1}(K)$ chosen so that in physical limit $(k \rightarrow 0)$

$$
u_{1}(0)=-\frac{M g^{2}}{4 \pi a_{F}} \quad a_{F}: \text { AA scattering length }
$$

- other couplings λ, u_{2}, v, w also vanish as $k \rightarrow \infty$
\rightarrow either set $Z_{\phi}(K)=0$ etc at large starting scale K or match on to K^{-n} behaviour in scaling regime $K \gg 1 / a_{F}$

Initial conditions

As $k \rightarrow \infty$ boson field purely auxiliary

- $Z_{\phi}(k) \rightarrow 0$
- $u_{1}(K)$ chosen so that in physical limit $(k \rightarrow 0)$

$$
u_{1}(0)=-\frac{M g^{2}}{4 \pi a_{F}} \quad a_{F}: \text { AA scattering length }
$$

- other couplings λ, u_{2}, v, w also vanish as $k \rightarrow \infty$
\rightarrow either set $Z_{\phi}(K)=0$ etc at large starting scale K or match on to K^{-n} behaviour in scaling regime $K \gg 1 / a_{F}$

Expansion point: dimer binding energy $\mathcal{E}_{D}=-1 /\left(M a_{F}^{2}\right)$

- external boson lines carry $P_{0}=-\mathcal{E}_{D}$
- external fermion lines carry $P_{0}=-\mathcal{E}_{D} / 2$ (below all thresholds)

Results: DD scattering length

- black: "minimal" action - only two-body and DD vertex u_{2}
- red adds three-body coupling λ
- green: full local four-body action, includes v, w
- purple: similar but using smooth cutoff

Comments

- results seem to converge as more terms are included
- converge to value only weakly dependent on cutoff (very liitle variation over range $0 \leq c_{B} \lesssim 2$)
- stationary very close to expected "optimum" $c_{B}=1$
- incomplete actions \rightarrow strong dependence on c_{B} around $c_{B}=1$

Comments

- results seem to converge as more terms are included
- converge to value only weakly dependent on cutoff (very liitle variation over range $0 \leq c_{B} \lesssim 2$)
- stationary very close to expected "optimum" $c_{B}=1$
- incomplete actions \rightarrow strong dependence on c_{B} around $c_{B}=1$

Final result

- $a_{B} / a_{F} \simeq 0.58 \pm 0.02$
- agrees well with full few-body result $a_{B} / a_{F}=0.6$
[Petrov, Salomon and Shlyapnikov (2004)]

Unitary limit

Tune $u_{1}(K)$ so that $u_{1}(k) \rightarrow 0$ as $k \rightarrow 0\left(1 / a_{F}=0\right)$
Evolution equation for 3 -body coupling λ

$$
\partial_{k} \lambda=\frac{28 k}{125 g^{2} M} \lambda^{2}+\frac{156}{125 k} \lambda+\frac{128 g^{2} M}{125 k^{3}}
$$

Rescale: $\hat{\lambda}=\frac{k^{2}}{g^{2} M} \lambda$

- dimensionless equation

$$
k \partial_{k} \widehat{\lambda}=\frac{28}{125} \hat{\lambda}^{2}+\frac{406}{125} \hat{\lambda}+\frac{128}{125}
$$

\rightarrow two fixed point solutions (roots of RHS)

- expand around IR stable point: $\hat{\lambda}-\widehat{\lambda}_{0} \propto k^{v}$ with $v=3.10355$
- compare exact solution: $v=4.33244$
[Griesshammer (2005); Werner and Castin; Birse (2006)]

Bosons (or ≥ 3 species of fermion in symmetric channel)

Very similar action and evolution equations

- different numerical coefficients
$\partial_{k} \lambda$ term linear in λ gets factor of -2 (cf Faddeev equation)
- rescaled equation

$$
k \partial_{k} \widehat{\lambda}=\frac{56}{125} \hat{\lambda}^{2}-\frac{62}{125} \hat{\lambda}+\frac{256}{125}
$$

\rightarrow two complex roots - fixed points

- expand around either: $\widehat{\lambda}-\widehat{\lambda}_{0} \propto k^{ \pm 2 i s_{0}}$
- imaginary exponent \rightarrow limit cycle of Efimov effect
- real solutions periodic under scaling k by factor $\mathrm{e}^{\pi / s_{0}}$ where $s_{0}=0.92503$ [Schmidt and Moroz (2009)]
- agrees with Efimov $s_{0}=1.00624$ to $\sim 5 \%$

4-body systems

Rescaled evolution equations for u_{2}, v, w

Fermions

- 4 fixed-point solutions
- only one IR stable
- smallest eigenvalue $v=4.19149$ (irrelevant)
- compare with result from system in harmonic trap $v=5.0184$ [Stecher and Greene (2009)]

Bosons

- 4 complex fixed points (since λ complex)
- only one IR stable
- eigenvalue with smallest real part $v=0.055165+3.50440 \mathrm{i}$
\rightarrow very weakly irrelevant ??
- couplings flow to cycle driven by 3-body sector $\lambda(k)$
- no sign of 4-body bound states at this truncation

Summary

First full applications of functional RG to 3- and 4-body systems

- local truncation, "optimised" cutoff
\rightarrow results for dimer-dimer scattering length
stable against variation of cutoff agree with direct few-body calculations
- unitary limit: scaling behaviours agree with exact 3-body qualitatively for 2 species of fermion much more accurately for bosons
- estimates of anomalous dimensions for four-body forces

Summary

First full applications of functional RG to 3- and 4-body systems

- local truncation, "optimised" cutoff
\rightarrow results for dimer-dimer scattering length
stable against variation of cutoff
agree with direct few-body calculations
- unitary limit: scaling behaviours agree with exact 3-body qualitatively for 2 species of fermion much more accurately for bosons
- estimates of anomalous dimensions for four-body forces

Future work

- use these 3-, 4-body interactions as input into calculations of dense matter [Floerchinger, talk at this meeting]
- 4 species of fermion (nucleons)

SU(4) symmetry: evolution same as either bosons or 2 species

3-body physics in unitary limit
Momentum space: one-variable integral equation
[Skornyakov and Ter-Martirosian (1956)]
Faddeev equation in hyperspherical coordinates
$\left(R^{2}=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{2}+\left|\mathbf{r}_{2}-\mathbf{r}_{3}\right|^{2}+\left|\mathbf{r}_{3}-\mathbf{r}_{1}\right|^{2}\right)$

- Schrödinger equation with $1 / R^{2}$ potential [Efimov, 1971]

$$
-\frac{1}{M}\left[\frac{\mathrm{~d}^{2}}{\mathrm{~d} R^{2}}+\frac{1}{R} \frac{\mathrm{~d}}{\mathrm{~d} R}-\frac{v^{2}}{R^{2}}\right] u(r)=p^{2} u(R)
$$

- hyperangular eigenvalue v^{2} fixed by boundary condition (S-waves)

$$
1=\sigma \frac{4}{\sqrt{3 \pi} v} \frac{\Gamma\left(\frac{1-v}{2}\right) \Gamma\left(\frac{1+v}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \sin \left(\frac{\pi v}{6}\right)
$$

- spatially symmetric: $\sigma=+1$; mixed-symmetry $\sigma=-\frac{1}{2}$ ("particle-exchange interaction" between pair and third particle)

