The hadronic vacuum polarisation contribution to $(g-2)_{\mu}$ from lattice QCD

Hartmut Wittig

In collaboration with:

M. Della Morte, B. Jäger, A. Jüttner

474th WE-Heraeus Seminar "Strong Interactions: From Methods to Structures"

15 February 2011

Introduction

• Muon anomalous magnetic moment:

 $a_{\mu} = \begin{cases} 116592080(63) \cdot 10^{-11} & \text{Experiment} \\ 116591790(65) \cdot 10^{-10} & \text{SM prediction}^* \end{cases}$

$$a_{\mu} = \frac{1}{2}(g-2)_{\mu}$$

Experimental sensitivity versus individual contributions:

[* Jegerlehner & Nyffeler, Phys Rept 477 (2009) 1]

Hadronic vacuum polarisation

• Phenomenological approach:

• Leading contribution:

$$a_{\mu}^{\text{VP;had}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \left\{ \int_{m_{\pi}^{2}}^{E_{\text{cut}}^{2}} \mathrm{d}s \frac{R_{\text{had}}^{\text{data}}(s)\hat{K}(s)}{s^{2}} + \int_{E_{\text{cut}}^{2}}^{\infty} \mathrm{d}s \frac{R_{\text{had}}^{\text{pQCD}}(s)\hat{K}(s)}{s^{2}} \right\}$$

$$\Rightarrow \quad a_{\mu}^{\text{VP;had}} = \left\{ \begin{array}{cc} (609.75 \pm 4.72) \cdot 10^{-10} & (\text{combined } e^{+}e^{-}\text{-data}) \\ (609.96 \pm 4.65) \cdot 10^{-10} & (e^{+}e^{-} \text{ and } \tau\text{-data}) \end{array} \right.$$

• After accounting for $\rho - \gamma$ mixing the 3σ -tension persists [Jegerlehner & Szafron, arXiv:1101.2872]

Lattice approach to hadronic vacuum polarisation

• Euclidean vacuum polarisation tensor:

$$\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iq \cdot (x-y)} \, \langle J_\mu(x) J_\nu(y) \rangle \equiv (q_\mu q_\nu - g_{\mu\nu} q^2) \Pi(q^2)$$
$$J_\mu(x) = \sum_{q=u,d,s,\dots} Q_q \, \overline{q}(x) \gamma_\mu q(x)$$

• Determine a_{μ}^{had} from convolution integral:

$$a_{\mu}^{\text{had}} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}q^2 f(q^2) \{\Pi(q^2) - \Pi(0)\}$$

$$f(q^2) = \frac{m_{\mu}^2 q^2 Z^3 (1 - q^2 Z)}{1 + m_{\mu}^2 q^2 Z^2}, \qquad Z = -\frac{q^2 - \sqrt{q^4 + 4m_{\mu}^2 q^2}}{2m_{\mu}^2 q^2}$$

Problems for lattice calculations:

• Convolution integral dominated by momenta near m_{μ} :

maximum of $f(q^2)$ located at: $(\sqrt{5} - 2)m_{\mu}^2 \approx 0.003 \,\text{GeV}^2$ lowest momentum transfer: $\left(\frac{2\pi}{T}\right)^2 \approx 0.06 \,\text{GeV}^2$

• Contributions from quark disconnected diagrams

Large noise-to-signal ratio

• Contributions from vector resonances (ρ, ω, ϕ) must be included

Outline:

- 1. ChPT and the rôle of disconnected diagrams
- 2. Lattice set-up
- 3. Results
- 4. Summary

2. ChPT and the rôle of disconnected diagrams

Aim:

- Show that connected and disconnected contributions have separate continuum and finite-volume limits
- Compute the relative size of the disconnected contribution in ChPT

Connected & disconnected diagrams in Partially Quenched QCD [Della Morte & Jüttner, JHEP 11 (2010) 154]

• Consider two-flavour QCD:

 $\mathcal{L}_{\text{QCD}}^{\text{quark}} = \overline{u}(D + m_u)u + \overline{d}(D + m_d)d$

• Consider contribution from up-quark only:

$$\Pi^{uu}_{\mu\nu}(q) = i\frac{4}{9} \int \mathrm{d}^4 x \,\mathrm{e}^{iq\cdot x} \left\langle j^{uu}_{\mu}(x) j^{uu}_{\nu}(0) \right\rangle_{\mathrm{QCD}}$$

 \rightarrow Wick contractions yield connected and disconnected parts

• The same result is recovered in partially quenched QCD:

Add a mass-degenerate valence quark r and a ghost field r_q :

 $\mathcal{L}_{\mathsf{PQQCD}}^{\mathsf{quark}} = \overline{u}(\not\!\!\!D + m_u)u + \overline{d}(\not\!\!\!D + m_d)d + \overline{r}(\not\!\!\!D + m_u)r + r_g^{\dagger}(\not\!\!\!D + m_u)r_g$

• Partition functions of QCD and PQQCD are mathematically the same PQQCD: based on extended graded flavour symmetry group

• Rewrite contribution from up-quark:

$$\begin{aligned} \Pi^{uu}_{\mu\nu}(q) &= i\frac{4}{9} \int \mathrm{d}^4 x \,\mathrm{e}^{iq \cdot x} \left\langle j^{uu}_{\mu}(x) j^{uu}_{\nu}(0) \right\rangle_{\mathrm{QCD}} \\ &= i\frac{4}{9} \int \mathrm{d}^4 x \,\mathrm{e}^{iq \cdot x} \left\{ \left\langle j^{ur}_{\mu}(x) j^{ru}_{\nu}(0) \right\rangle_{\mathrm{PQQCD}} + \left\langle j^{uu}_{\mu}(x) j^{rr}_{\nu}(0) \right\rangle_{\mathrm{PQQCD}} \right\} \end{aligned}$$

- → Connected and disconnected contributions are expressed as separate correlation functions in PQQCD
 - Contribution from down-quark treated in the same way $(m_u = m_d)$
 - Low-energy description: Partially Quenched Chiral Perturbation Theory

QCD	PQQCD, PQChPT
$N_{\rm f} = 2$	SU(3 1)
$N_{\rm f} = 2$, quenched strange	SU(4 2)
$N_{\rm f} = 3$	SU(4 1)

Connected & disconnected diagrams in Partially Quenched ChPT [Della Morte & Jüttner, JHEP 11 (2010) 154]

• Leading-order Lagrangian:

 $\mathcal{L}^{(2)} = \frac{F_0}{4} \operatorname{Tr} \left(D_{\mu} U D^{\mu} U^{\dagger} \right) + \frac{1}{2} \operatorname{Tr} \left(M U^{\dagger} + M^{\dagger} U \right), \quad U = \exp(i\lambda_a \phi_a F_0)$ $D_{\mu} U = \partial_{\mu} U + i v_{\mu} U - i U v_{\mu}$ $\mathcal{L}^{(2)}_{\text{int}} = -f_{abc} \phi_c \partial_{\mu} \phi_a v^b_{\mu} + \frac{1}{2} f_{abg} f_{cdg} \phi_b \phi_c v^a_{\mu} v^d_{\mu}$

- Graded flavour symmetry: $Tr \rightarrow Str$
- One-loop contributions to vector-vector correlator:

$$a \wedge b$$
 $a \wedge b$ $a \wedge d \wedge b$

• Remove divergencies by tree-level insertions of $O(p^4)$ Lagrangian [R. Kaiser, Phys Rev D63 (2001) 076010]

$N_{\rm f}=2~{\rm QCD}$ in ${\rm SU}(3|1)~{\rm PQChPT}$

• Result of one-loop calculation:

$$\Pi^{(3|1)}(q^2) = -\left(\Lambda^{(3|1)}(\mu) + \frac{2}{9}h_s + 4i\bar{B}_{21}(\mu^2, q^2, m_\pi^2)\right)$$
$$\Pi^{(3|1)}_{\text{conn}}(q^2) = -\frac{10}{9}\left(\Lambda^{(3|1)}(\mu) + 4i\bar{B}_{21}(\mu^2, q^2, m_\pi^2)\right)$$
$$\Pi^{(3|1)}_{\text{disc}}(q^2) = -\frac{1}{9}\left(\Lambda^{(3|1)}(\mu) - 2h_s + 4i\bar{B}_{21}(\mu^2, q^2, m_\pi^2)\right)$$

- Low-energy constants: $\Lambda^{(3|1)}(\mu) = -8h_2(\mu), h_s$
- Combination $\hat{\Pi}(q^2) \equiv \Pi(q^2) \Pi(0)$ enters convolution integral

$$\Rightarrow \quad \frac{\Pi_{\text{disc}}(q^2) - \Pi_{\text{disc}}(0)}{\Pi_{\text{conn}}(q^2) - \Pi_{\text{conn}}(0)} = -\frac{1}{10}$$

 \Rightarrow PQChPT @ NLO: disconnected contribution is 10% downward shift

$N_{\rm f}=2~{\rm QCD}$ with quenched strange quark, in ${\rm SU}(4|2)~{\rm PQChPT}$

• Disconnected contribution vanishes for $m_{\pi} = m_{\mathrm{K}}$

 \rightarrow study contribution as a function of $m_{\pi} = 495 \,\mathrm{MeV}, \ldots, \, 139 \,\mathrm{MeV}$

-10% correction of two-flavour case presents lower bound

$N_{\rm f}=3~{\rm QCD}$ in ${\rm SU}(4|1)~{\rm PQChPT}$

• Disconnected contribution vanishes for $m_{\pi} = m_{\mathrm{K}}$

 \rightarrow study contribution as a function of $m_{\pi} = 495 \,\mathrm{MeV}, \ldots, \, 139 \,\mathrm{MeV}$

-10% correction of two-flavour case presents lower bound

2. Lattice setup

• Focus on connected contribution:

$$\Pi(q^2) = \frac{i \int \mathrm{d}^4 x \,\mathrm{e}^{iq \cdot x} \left\langle J^{rs}_{\mu}(x) J^{sr}_{\nu}(0) \right\rangle}{q_{\mu} q_{\nu} - g_{\mu\nu} q^2}$$

• $\hat{\Pi}(q^2) \equiv \Pi(q^2) - \Pi(0)$ enters convolution integral

 \rightarrow requires extrapolation to $q^2 = 0$

• Lattice momenta: $q_{\mu} = n_{\mu} \frac{2\pi}{L_{\mu}}, \quad n_{\mu} = 0, 1, \ldots, L_{\mu}/a - 1$

 $L = 2.5 \,\mathrm{fm}, \quad T = 2L \quad \Rightarrow \quad q^2 \gtrsim 0.06 \,\mathrm{GeV}^2$

- \rightarrow Lack of accurate data points near $q^2 = 0$
- \rightarrow Extrapolation to $q^2 = 0$ not well controlled

[Bedaque 2004; de Divitiis, Petronzio & Tantalo 2004; Flynn, Jüttner & Sachrajda 2005]

• Apply "twisted" spatial boundary conditions;

Impose periodicity up to a phase $\vec{\theta}$:

$$\psi(x + L\hat{e}_k) = e^{i\theta_k}\psi(x) \implies q_k = n_k \frac{2\pi}{L} + \frac{\theta_k}{L}$$

[Bedaque 2004; de Divitiis, Petronzio & Tantalo 2004; Flynn, Jüttner & Sachrajda 2005]

• Apply "twisted" spatial boundary conditions;

Impose periodicity up to a phase $\vec{\theta}$:

$$\psi(x + L\hat{e}_k) = e^{i\theta_k}\psi(x) \quad \Rightarrow \quad q_k = n_k \frac{2\pi}{L} + \frac{\theta_k}{L}$$

• Check dispersion relation:

[Flynn, Jüttner, Sachrajda, hep-lat/0506016]

[Bedaque 2004; de Divitiis, Petronzio & Tantalo 2004; Flynn, Jüttner & Sachrajda 2005]

• Apply "twisted" spatial boundary conditions; Impose periodicity up to a phase $\vec{\theta}$:

$$\psi(x + L\hat{e}_k) = e^{i\theta_k}\psi(x) \implies q_k = n_k \frac{2\pi}{L} + \frac{\theta_k}{L}$$

- Imposing twisted boundary conditions in valence sector only:
 exponentially small finite-volume effects [Sachrajda & Villadoro, Phys Lett B609 (2005) 73]
- Can tune q^2 to any desired value

 \rightarrow Compute connected contribution to $\Pi(q^2)$

[Bedaque 2004; de Divitiis, Petronzio & Tantalo 2004; Flynn, Jüttner & Sachrajda 2005]

• Apply "twisted" spatial boundary conditions; Impose periodicity up to a phase $\vec{\theta}$:

$$\psi(x + L\hat{e}_k) = e^{i\theta_k}\psi(x) \implies q_k = n_k \frac{2\pi}{L} + \frac{\theta_k}{L}$$

- Imposing twisted boundary conditions in valence sector only:
 exponentially small finite-volume effects [Sachrajda & Villadoro, Phys Lett B609 (2005) 73]
- Effect of twist angle cancels in disconnected contribution to $\Pi(q^2)$
 - → Compute disconnected diagrams for Fourier modes only;
 - \rightarrow Validate their relative suppression

CLS[†] Run Table

- Discretisation: $N_{\rm f} = 2$ flavours of O(a) improved Wilson quarks
- 3 lattice spacings: $a = 0.08, 0.066, 0.053 \,\mathrm{fm}$
- Pion masses: $m_{\pi} = 250 700 \,\mathrm{MeV}$

β	$a[\mathrm{fm}]$	lattice	$L[\mathrm{fm}]$	masses	$m_{\pi}L$	Labels
5.20	0.08	$32^3 \cdot 64$	2.6	4 masses	4.7 - 7.9	A2 – A5
5.20	0.08	$48^{3} \cdot 96$	3.8	1 mass	5.4	B6
5.30	0.07	$32^3 \cdot 64$	2.2	3 masses	4.7 – 7.9	E3 — E5
5.30	0.07	$48^3 \cdot 96$	3.4	2 masses	5.0, 4.2	F6, F7
5.50	0.05	$48^3 \cdot 96$	2.5	3 masses	5.3 – 7.7	N3 — N5
5.50	0.05	$64^3 \cdot 128$	3.4	1 mass	4.2	07

[Brandt, Capitani, Della Morte, Djukanovic, von Hippel, Jäger, Jüttner, Knippschild, H.W., arXiv:1010.2390]

[†]CLS = Coordinated Lattice Simulations

[https://twiki.cern.ch/twiki/bin/view/CLS/WebHome]

3. Results [Della Morte, Jäger, Jüttner, H.W., arXiv:1011.5793, and in preparation]

- Compute the connected contribution using twisted boundary conditions
- Use the conserved point-split lattice vector current
- Results in pure $N_{\rm f}=2~{\rm QCD}$ and in two-flavour QCD with a quenched strange quark
- Investigate systematic effects: lattice artefacts, finite-volume effects

• $\Pi(q^2)$ at $m_\pi \approx 250 \,\mathrm{MeV}, a = 0.066 \,\mathrm{fm}$

• $\Pi(q^2)$ at $m_\pi \approx 250 \, {
m MeV}, a = 0.066 \, {
m fm}$

- Use different *ansätze* to determine $\Pi(0)$:
 - Polynomial
 - Dispersion relation: $\Pi(q^2) = B \ln(a^2 q^2 + a^2 s_0) \frac{A}{q^2 + m_V^2} + K$
 - Padé fit

• $\Pi(q^2)$ at $m_\pi pprox 250 \, {
m MeV}, a = 0.066 \, {
m fm}$

• Twisted boundary conditions stabilise determination of q^2 -dependence and of $\Pi(0)$:

Systematic uncertainties arising from ambiguity in the fit ansatz and choice of q^2 -range greatly reduced

• Shape of convolution function precisely determined using twisted boundary conditions

 \rightarrow statistical errors reduced by factor 2

• Further improvement: higher statistical precision at low q^2

• Strong pion mass dependence of a_{μ}^{had} :

• Chiral fit: $a_{\mu}^{had}(m_{\pi}^2) = A + Bm_{\pi}^2 + Cm_{\pi}^2 \ln m_{\pi}^2$

- Expect cutoff effects of O(*a*), since point-split vector current receives off-shell contributions
- Discretisation errors in a_{μ}^{had} $(m_{\pi} = 412 \,\mathrm{MeV})$

• Lattice artefacts small relative to statistical errors

Adding contribution from quenched strange quark

• Increase by $\approx 20\%$ w.r.t. two-flavour theory

(single lattice spacing: $\beta = 5.3$)

• Chiral fit: $a_{\mu}^{had}(m_{\pi}^2) = A + Bm_{\pi}^2 + Cm_{\pi}^2 \ln m_{\pi}^2$

• More chiral points to be added

- Hadronic vacuum polarisation on the lattice is tough
- This work: several important technical & conceptual improvements:
 - Separate studies of connected & disconnected contributions is justified
 - Twisted boundary conditions valuable tool to reduce statistical and systematic uncertainties
 - Develop & improve methods to compute disconnected contributions

- Hadronic vacuum polarisation on the lattice is tough
- This work: several important technical & conceptual improvements:
 - Separate studies of connected & disconnected contributions is justified
 - Twisted boundary conditions valuable tool to reduce statistical and systematic uncertainties
 - Develop & improve methods to compute disconnected contributions
- Future progress: smaller pion masses, larger volumes

- Hadronic vacuum polarisation on the lattice is tough
- This work: several important technical & conceptual improvements:
 - Separate studies of connected & disconnected contributions is justified
 - Twisted boundary conditions valuable tool to reduce statistical and systematic uncertainties
 - Develop & improve methods to compute disconnected contributions
- Future progress: smaller pion masses, larger volumes
- Current status: not yet in a position to challenge phenomenological approach

- Hadronic vacuum polarisation on the lattice is tough
- This work: several important technical & conceptual improvements:
 - Separate studies of connected & disconnected contributions is justified
 - Twisted boundary conditions valuable tool to reduce statistical and systematic uncertainties
 - Develop & improve methods to compute disconnected contributions
- Future progress: smaller pion masses, larger volumes
- Current status: not yet in a position to challenge phenomenological approach
- Hadronic light-by-light scattering:

even tougher problem; new ideas & concepts required