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Tunable universes

Cold Atoms
erties that are tunable by an external magnetic field. The

tuning dependence arises from the magnetic moment differ-

ence !"mag between the open and closed channels #9$. This
gives rise to a characteristic dispersive behavior of the

s-wave scattering length at fields close to resonance given by

a!abg! 1"
!B

B"B0
" , %1&

where abg is the background value that may itself depend

weakly on magnetic field. The field width of the resonance is

given by !B , and the bound state crosses threshold at a
field-value B0. The field detuning can be converted into an

energy detuning '̄ by the relation '̄!(B"B0)!"mag. An

example of such a resonance is given in Fig. 1, where a

coupled-channels calculation is shown of the scattering

length of 6Li for collisions between atoms in the ( f ,mf)

!(1/2,"1/2) and (1/2,1/2) states #10$. The background scat-
tering length changes slowly as a function of magnetic field

due to a field-dependent mixing of a second resonance that

comes from the triplet potential. This full coupled-channels

calculation includes the state-of-the-art interatomic potentials

#11$ and the complete internal hyperfine structure #13$.
The scattering length is often used in many-body theory

to describe interactions in the s-wave regime. That the scat-

tering length completely encapsulates the collision physics

over relevant energy scales is implicitly assumed in the deri-

vation of the conventional Bardeen-Cooper-Schrieffer %BCS&
theory for degenerate gases #14,15$, as well as the Gross-
Pitaevskii description of Bose-Einstein condensates. How-

ever, the scattering length is only a useful concept in the

energy regime where the s-wave scattering phase shift (0
depends linearly on the wave number k, i.e., (0!"ka . For a

Feshbach resonance system at a finite temperature there will

always be a magnetic field value where this approximation

breaks down and the scattering properties become strongly

energy dependent. In close proximity to a resonance, the

scattering process then has to be treated by means of the

energy-dependent T matrix.

Only the exact interatomic interaction will reproduce the

full T matrix over all energy scales. However, since only

collision energies in the ultracold regime %of order mi-
crokelvin& are relevant, a much simpler description is pos-
sible. If the scattering length does not completely character-

ize the low-energy scattering behavior in the presence of a

resonance, what is the minimal set of parameters that will

do?

As illustrated in Fig. 2, we proceed to systematically re-

solve this question by the following steps. We start from a

numerical solution of the complete coupled-channels scatter-

ing problem for a given real physical system. In Sec. II A we

demonstrate that the results of these full numerical calcula-

tions can be adequately replicated by giving an analytic de-

scription of resonance scattering provided by Feshbach’s

resonance theory. The point of this connection is to demon-

strate that only a few parameters are necessary to account for

all the collision properties. This implies that the scattering

model is not unique. There are many microscopic models

that could be described by the same Feshbach theory. In Sec.

II B we show this explicitly by presenting a simple double-

well model for which analytic solutions are accessible.

Thereby we derive a limiting model in which the range of the

square well potentials and coupling matrix elements are

taken to zero. This leads in Sec. II C to a scattering model of

contact potentials. We show that such a scattering solution is

able to reproduce well the results of the intricate full numeri-

cal model we began with. The utility of this result is that, as

will be apparent later, it greatly simplifies the many-body

theoretic description.

A. Feshbach resonance theory

Here we briefly describe the Feshbach resonance formal-

ism and derive the elastic S matrices and T matrices for two-

FIG. 1. Scattering length as a function of magnetic field, for the

( f ,mf)!(1/2,"1/2) and (1/2,1/2) mixed spin channel of
6Li.

FIG. 2. Sequence of theoretical steps involved in formulating a

renormalized scattering model of resonance physics for low-energy

scattering. The starting point is a full coupled-channels %CC& calcu-
lation that leads us via an equivalent Feshbach theory, and an ana-

lytic coupled square-well theory, to a contact potential scattering

theory that gives the renormalized equations for the resonance

system.
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Approaches

✤ Design your own universe

✤ Atomic simulations of CM, Nuclear, HE phenomena

✤ Role of nonperturbative calculations

✦ Bridge the gap

✦ “Fundamental constants” (e.g. unitary Fermi gas)

✦ Discover a solution to fermion algorithm problem



Conundrum

✤ Nonperturbative problems solvable numerically

✤ Efficient algorithms for bosonic systems

✤ Fermions matter since matter’s fermionic

✤ Why is life so difficult?  ➙

✤ Is there a general solution waiting to be discovered?



Lattice Monte Carlo in a nutshell

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

〈Θ〉 =

1

Z

∫
[dψ][dψ̄][dU ] Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

〈ψ̄Γψ〉 =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0
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Lattice Monte Carlo in a nutshell

Probability weight

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

〈Θ〉 =

1

Z

∫
[dψ][dψ̄][dU ] Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

〈ψ̄Γψ〉 =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0

Determinant in probability weight difficult
1) Requires nonlocal updating;  2) Matrix becomes singular



Conundrum

✤ Nonperturbative problems solvable numerically

✤ Efficient algorithms for bosonic systems

✤ Fermions matter since matter is fermionic

✤ Why is life so difficult?  ➙

✤ Is there a general solution waiting to be discovered?
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“Genius is 1% inspiration and 99% perspiration”
-- Thomas Edison (born 11 February 1847)
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Yesterday’s Google Doodle

“Genius is 1% inspiration and 99% perspiration”
-- Thomas Edison (born 11 February 1847)

“All work and no play makes Jack a dull boy.”
-- Jack Nicholson, as he loses his sanity in The Shining

Good news:
1) Jack was a novelist

2) Jack didn’t attend stimulating workshops



Outline

✤ “Unitary Fermi Gas” (2-component gas of nonrelativistic 
fermions interacting with divergent scattering length, in 3 
dimensions, i.e. at the BEC-BCS crossover)

✤ Diagrammatic Determinant Monte Carlo

✤ Results for critical temperature, contact density

✤ Outlook

✤ Note J. Carlson’s talk after coffee



✤ Physical interactions: Van der Waals, short range rVdW

✤ Dilute, (V/n)1/3 ≫ rVdW, implies details of potential are 
negligible

✤ 2-body scattering calculation matches coupling to 
physical scattering length

Dilute Fermi Gas

H = −
1

2m

∑∑∑

σ

ψ̄σ∇2ψσ −
g2

2
(
ψ̄1ψ̄2ψ2ψ1

)
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Figure 1. Diagrammatic series for the vertex insertion !(ξ, p) (heavy dot). Small
dots represent the bare Hubbard interaction U, and lines are the single-particle
propagators.

qualitative description of the MC procedure to sum the diagrammatic series (subsection 3.2), with
details of the updating procedures given in appendix A. In order to extract the thermodynamic
limit properties from MC data, we use finite-size scaling analysis described in section 4. Section
5 gives an overview of the scaling functions describing thermodynamics of the unitary gas, and
results are presented and discussed in section 6.

2. Two-body problem

Consider a quantum mechanical problem of two fermions at zero temperature described by the
Hamiltonian (1.1a)–(1.1c) with µ = 0. The most straightforward way to tackle this problem is
within the diagrammatic technique in the momentum-frequency representation [28, 29], which,
in the present case, is built on four-point vertices, U, with two incoming (spin-↑ and spin-↓) and
two outgoing (spin-↑ and spin-↓) ends, connected by single-particle propagators. The scattering
of two particles is then described by a series of ladder diagrams [16, 29] shown in figure 1.
Ladder diagrams can be summed by introducing the vertex insertion !(ξ, p), which depends
on frequency ξ and momentum p. Since !(0, 0) is proportional to the scattering amplitude,
the unitarity limit corresponds to !(ξ → 0, p → 0) → ∞. The summation depicted in figure 1
leads to

!−1(ξ, p) = U−1 + #(ξ, p), (2.1)

where #(ξ, p) is the polarization operator (the integration is over the Brillouin zone)

#(ξ, p) =
∫

BZ

dk
(2π)3

1
ξ + εp/2+k + εp/2−k

. (2.2)

It immediately follows from equations (2.1) and (2.2) that the unitary limit corresponds to
U = U∗, where

U−1
∗ = −#(0, 0) = −

∫

BZ

dk
(2π)3

1
2εk

. (2.3)

A straightforward numeric integration yields U∗ ≈ −7.915t.
In the limit of vanishing filling factor ν → 0 for the many-body problem of (1.1a)–

(1.1c), the typical values of ξ and p are related to the Fermi energy ξ ∼ εF ∼ ν2/3 and Fermi

New Journal of Physics 8 (2006) 153 (http://www.njp.org/)



Phase diagram

BCS

BEC

High temperature = normal matter

Low temperature = superfluid matter
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Diagrammatic Determinant M.C.

✤ Rubtsov, Savkin, Lichtenstein: sampling of diagrams, 
fast updates using ratio of determinants

✤ Burovski, Prokof’ev, Svistunov, Troyer: worm-type 
updates, full scale calculation of Tc in continuum limit

✤ Goulko: new update, reducing autocorrelations, sign-
quenched method for spin-polarized gas 



Diagrammatic expansion
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Figure 2. Diagrammatic series for the partition function. Upper line is the
graphical representation of the series (3.2), lower line depicts equation (3.4).
Diagram signs are shown explicitly.

3. Determinant diagrammatic MC

The diagrammatic technique employed in the previous section is not particularly convenient for
numerical studies. In this section, we briefly review the Matsubara technique and then present a
MC scheme of summing the resultant diagrammatic series.

3.1. Rubtsov’s representation

To construct a diagrammatic expansion for the model (1.1a)–(1.1c), we follow [22, 30]
and consider the statistical operator in the coordinate–imaginary time representation. In the
interaction picture, we get

exp(−βH) = exp(−βH0)Tτ exp
(

−
∫ β

0
dτH1(τ)

)
, (3.1)

where β is an inverse temperature, H1(τ) = eτH0H1e−τH0 , and Tτ stands for the imaginary time
ordering.

Expanding equation (3.1) in powers of H1, one obtains for the partition function

Z =
∞∑

n=0

(−U)n
∑

x1 ··· xn

∫

0 < τ1 < τ2 < ··· < β

n∏

j=1

dτj

× tr
[
e−βH0

n∏

j=1

c†
↑(xjτj)c↑(xjτj)c

†
↓(xjτj)c↓(xjτj)

]
. (3.2)

Expansion (3.2) generates the standard set of Feynman diagrams. Graphically, the diagrams are
similar to those of section 2, and consist of the four-point vertexes, U, connected by the single-
particle propagators G(0)

σ (xi − xj, τi − τj; µ, β) = − tr[Tτe−βH0c†
σ(xiτi)cσ(xjτj)]. The pth order

of the perturbation theory is then graphically given by a set of (p!)2 possible interconnections
of vertices by propagators, see figure 2.

The diagrammatic expansion (3.2) is unsuitable for the direct MC simulation since it has a
sign problem built in: different terms in the series have different signs—a closed fermion loop
brings in an extra minus sign [28]. The trick is to consider all diagrams of a given order p with
the fixed vertex configuration

Sp = {(xj, τj), j = 1, . . . , p} (3.3)

New Journal of Physics 8 (2006) 153 (http://www.njp.org/)
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Figure 3. Diagrammatic series for the correlation function (3.7). Diamonds
represent the two-point creation/annihilation operators P and P†.

as one. This implies summation over the (p!)2 ways of connecting vertexes by propagators. Upon
summation, equation (3.2) takes on the form [22]

Z =
∞∑

p=0

(−U)p
∑

Sp

det A↑(Sp) det A↓(Sp), (3.4)

where

∑

Sp

≡
∑

x1 ··· xp

∫

0 < τ1 < τ2 < ··· < τp < β

p∏

j=1

dτj, (3.5)

and Aσ(Sp) are the p × p matrices built on the single-particle propagators

Aσ
ij(Sp) = G(0)

σ (xi − xj, τi − τj) , i, j = 1, . . . , p. (3.6)

For equal number of spin-up and spin-down particles det A↑ det A↓ = |detA|2, and the sign
problem is absent.6 Graphically, Feynman diagrams in this representation are just collections of
vertices, see figure 2. For future use, we define the set of all possible vertex configurations (3.3)
by S(Z), i.e. S(Z) = {p, Sp}.

The following two-point pair correlation function will prove useful

G2(xτ; x′τ ′) = 〈TτP(x, τ)P†(x′, τ ′)〉 ≡ g2(xτ; x′τ ′)

Z
, (3.7)

g2(xτ; x′τ ′) = TrTτP(x, τ)P†(x′, τ ′)e−βH, (3.8)

where P(x, τ) and P†(x′, τ ′) are the pair annihilation and creation operators in the Heisenberg
picture, respectively: P(x, τ) = cx↑(τ)cx↓(τ). The nonzero asymptotic value of G2(xτ; x′τ ′) as
|x − x′| →∞ is proportional to the condensate density.

Feynman diagrams for g2(xτ; x′τ ′) are similar to those for Z, but contain two extra
elements: a pair of two-point vertices with two incoming (outgoing) ends which represent P(x, τ)
(P†(x′, τ ′)), see figure 3. The vertex configurations for the correlation function (3.7) slightly
differ from those for the partition function (3.3) by the presence of the two extra elements: the
configuration space for equation (3.7) is S(G) = {p, {S̃p}}, with

S̃p = {P(x, τ), P†(x′, τ ′), (xj, τj), j = 1, . . . , p}. (3.9)

6 At half filling, the sign of U changes if the hole representation is used for one of the spin components. Hence, this
method is also applicable to the half-filled repulsive Hubbard model.

New Journal of Physics 8 (2006) 153 (http://www.njp.org/)

Coupling large. Do not truncate! Sample using Monte Carlo.

Z = Tr exp [ − β(Ĥ − µN̂)]
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Tc, equal spin populationsThe imbalanced Fermi gas at unitarity O. Goulko
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Figure 4: Tc/!F with the constant fit (left) and E/EFG with the quadratic fit (right) versus "1/3 and #µ/!F .

Forcing $
(E)
2 = 0 yields a best fit result of E(" ,h) = 0.444(13) + 1.9(3)h2 − 0.18(2)"1/3 with

%2/d.o.f.= 2.7, which agrees with the previous result. For a plot of the data see Fig. 4 (right).

3.3 Chemical potential

For the chemical potential atTc we obtain the continuum value µ/!F = 0.429(9) with %2/d.o.f.

= 2.8 using only balanced data. A similar analysis can be performed for the average chemical

potential µ/!F = |µ↑+ µ↓|/2!F in presence of an imbalance. Since this quantity is not expected

to depend on the imbalance we fit our data to a constant function and obtain µ(" ,h) = 0.429(7)−

0.27(1)"1/3 in units of !F with %2/d.o.f.= 1.1. This is in very good agreement with our balanced

result. A plot of the data and the fit are shown in Fig. 3.

3.4 Contact density

Another important quantity is the contact density, which can be interpreted as a measure of the

local pair density [8]. The contact plays an important role for several universal relations derived by

Tan [9]. The definition of the contact isC = m2g0Eint, where g0 is the physical coupling constant

5

Goulko & Wingate, Phys. Rev. A 83, 053621 (2010) 

 ← ← ← continuum limit

(density in lattice units)1/3



Monte Carlo results for Tc/TF

Burovski, Prokof’ev, Svistunov, Troyer   0.152(7)

Burovski, Kozik, Prokof’ev, Svistunov, Troyer   0.152(9)
Bulgac, Drut, Magierski 0.15(1)

Abe, Seki 0.189(12)

Goulko, Wingate 0.173(6) 

DDMC

DDMC



Finite size scaling (order parameter)

Instead we peform a global fit to 4 parameters.  Robust.

We find this method sometimes ambiguous

Calculation of corrected crossing on 2 lattices sizes: Li, Lj

R(L, T ) =
[
f0 + f1 (T − Tc)L1/νξ + . . .

] (
1 + cL−ω

)

R(Li, Tij) = R(Lj, Tij) Tij − Tc = κg(Li, Lj)⇒
with

g(Li, Lj) =
(Lj/Li)ω − 1

Lω
j (L1/νξ

j − L
1/νξ

i ) + cL
1/νξ

j [1 − (Li/Lj)−ω+1/νξ ]

Integrated pairing-correlation function
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Toward improvementThe imbalanced Fermi gas at unitarity O. Goulko
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Forcing $
(E)
2 = 0 yields a best fit result of E(" ,h) = 0.444(13) + 1.9(3)h2 − 0.18(2)"1/3 with

%2/d.o.f.= 2.7, which agrees with the previous result. For a plot of the data see Fig. 4 (right).

3.3 Chemical potential

For the chemical potential atTc we obtain the continuum value µ/!F = 0.429(9) with %2/d.o.f.

= 2.8 using only balanced data. A similar analysis can be performed for the average chemical

potential µ/!F = |µ↑+ µ↓|/2!F in presence of an imbalance. Since this quantity is not expected

to depend on the imbalance we fit our data to a constant function and obtain µ(" ,h) = 0.429(7)−

0.27(1)"1/3 in units of !F with %2/d.o.f.= 1.1. This is in very good agreement with our balanced

result. A plot of the data and the fit are shown in Fig. 3.

3.4 Contact density

Another important quantity is the contact density, which can be interpreted as a measure of the

local pair density [8]. The contact plays an important role for several universal relations derived by

Tan [9]. The definition of the contact isC = m2g0Eint, where g0 is the physical coupling constant
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FIG. 11. (Color online) Projection of the data onto the (ν1/3-
Tc) plane. Red circles denote the balanced data and blue
triangles data at non-zero imbalance. The line corresponds to
the constant fit (33). Dashed lines denote the error margins.

results in χ2/d.o.f.= 0.44. From the error on T2 we derive
the lower bound T2 > −0.5. The best fit values for T0

and α0 are in excellent agreement with the ones obtained
from the fit of the balanced data only.
The error on the best fit value for α2 is very large and

the fit is consistent with α2 = 0. Hence we also perform
a fit to the function

Tc(ν, h) = T0 + T2h
2 + α0ν

1/3, (30)

where Tc(h) has again been expanded to quadratic order
and the function α(h) has been replaced by a constant
α0. The best fit is

Tc(ν, h) = 0.171(5) + 0.07(11)h2 − 0.155(8)ν1/3, (31)

with χ2/d.o.f.= 0.41. This χ2-value is even lower than
for the previous fit, which means that the data justifies
dropping the α2 term. The best fit result is still con-
sistent with T2 = 0 and leads to a much tighter lower
bound T2 > −0.04. The other parameters T0 and α0

agree with the results from the previous fit and the fit of
the balanced data.
Since our results indicate that Tc remains almost un-

changed in response to a weak imbalance, we also perform
a fit to constant Tc(h) and α(h),

Tc(ν, h) = T0 + α0ν
1/3. (32)

This is the same function as the one used in the balanced
case and corresponds to a straight line fitted through the
projection of all data points onto the (ν1/3-Tc) plane, see
Fig. 11. The best fit is

Tc(ν, h) = 0.1720(45)− 0.156(8)ν1/3, (33)

with χ2/d.o.f.= 0.41. Again the result agrees with the
previous fits.
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a function of imbalance. The solid line is the value obtained
from the constant fit (32), the shaded area corresponds to
one standard deviation. The dashed line is the lower bound
obtained from fit (29) and the dot-dashed line is the tighter
lower bound obtained from fit (30).

FIG. 13. (Color online) Three dimensional plot of the critical
temperature versus filling factor and imbalance. The surface
corresponds to the constant fit (33).

We also performed fits using the jackknife method and
several robust fits. All results were consistent with the
minimal χ2 fits. Table I provides an overview of the
results obtained with the different fit methods. The val-
ues for the parameters T0 and α0 were obtained with
high accuracy and are all in excellent agreement with
each other, independently of the form of the fit function.
Depending on the model assumptions two lower bounds
could be derived for the leading order deviation of the
critical temperature from its balanced value. Figure 12
shows these two bounds compared with the value in the

Goulko & Wingate, Phys. Rev. A 83, 053621 (2010) 
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We also performed fits using the jackknife method and
several robust fits. All results were consistent with the
minimal χ2 fits. Table I provides an overview of the
results obtained with the different fit methods. The val-
ues for the parameters T0 and α0 were obtained with
high accuracy and are all in excellent agreement with
each other, independently of the form of the fit function.
Depending on the model assumptions two lower bounds
could be derived for the leading order deviation of the
critical temperature from its balanced value. Figure 12
shows these two bounds compared with the value in the
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How imbalanced?
9

in [14]. The value quoted in [4] is E/NεF = 0.31(1),
which in units of the free ground state energy roughly
corresponds to E/EFG = 0.52(2).
For the chemical potential at Tc we obtain the contin-

uum value µ/εF = 0.429(9) with χ2/d.o.f. = 2.8. Our
result differs from the value µ/εF = 0.493(14) quoted
in [4], but is consistent with the value µ/εF = 0.43(1)
quoted in [14].
Since the chemical potential and the energy are ex-

pected to stay almost constant at temperatures below
Tc we also make a comparison to values from the liter-
ature obtained at zero temperature. In the zero tem-
perature limit the quantities µ/εF and E/EFG are equal
and Monte Carlo estimates range between approximately
0.40(1) and 0.44(1) [25–28]. Our value for the chemi-
cal potential falls within this range, the value for the
total energy is slightly higher, which is consistent with
the fact that the energy must increase at finite tempera-
ture. These numerical estimates are consistent with ex-
periment [29–31].
Finally, we make a comparison with recent experimen-

tal studies of the homogeneous unitary Fermi gas. A
direct measurement of the critical temperature and the
chemical potential of the uniform gas has been presented
in [32]. Their experimental value Tc/εF = 0.157(15)
agrees well with our result. However, the value of the
chemical potential at the critical point µ/εF = 0.49(2)
differs from our value. Another experimental determi-
nation of the critical temperature and thermodynamic
functions, including the energy and the chemical poten-
tial, is described in [33]. Their values Tc/εF = 0.17(1)
and µ/εF = 0.43(1) at Tc show excellent agreement
with our results. Their result for the energy per par-
ticle E/NεF = 0.34(2) at Tc is higher than our value. In
another experimental work [34] an estimate for the crit-
ical temperature at zero imbalance is extrapolated from
data at higher values of imbalance.

B. Imbalanced Results

Now we will present our results for the imbalanced case
µ↓ != µ↑. Data was taken at 25 points, of which 23 lie
within the regime of linear scaling, ν1/3 < 0.75. Out
of these 23 points 7 are at zero imbalance, as discussed
in the previous section. The two most common ways of
quantifying imbalance are either through the chemical
potential difference ∆µ/εF = |µ↑ − µ↓|/εF , or through
the relative density difference ∆ν/ν = |ν↑−ν↓|/(ν↑+ν↓).
For the values of imbalance considered in our study
these two quantities are proportional to each other, with
∆ν/ν = 0.122(2)∆µ/εF , as illustrated in Fig. 10. The
relative density difference shows no dependence on lattice
size (the L-dependencies of ν and ∆ν cancel each other
out), but considerable dependence on the temperature.
Also since ∆ν is a small quantity, numerical fluctuations
can become significant. Since the chemical potential dif-
ference is less prone to numerical errors, we will use it
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FIG. 10. (Color online) Relation between the chemical po-
tential difference and the relative density difference at Tc.

from now on to quantify imbalance.
The critical temperature Tc/εF is now a function of fill-

ing factor ν and imbalance h = ∆µ/εF (in the following
we assume that all quantities are in physical units and
do not always write the εF factors explicitly). We are ul-
timately interested in the continuum limit corresponding
to ν = 0 and want to perform the corresponding extrap-
olation. To achieve this all numerical data is fitted to a
three dimensional surface, where the following assump-
tions are made for the form of the fitted function:

• At fixed imbalance the critical temperature is
a linear function of ν1/3, with slope α(h):
Tc(ν, h = const) = Tc(h) + α(h)ν1/3. This is a
generalisation of the relation valid in the balanced
case.

• Tc(h) and α(h) viewed as functions of the imbal-
ance h are analytic and can thus be Taylor ex-
panded.

• Due to symmetry in h all odd powers in the Taylor
expansions of Tc(h) and α(h) have to vanish.

• Tc(h) must be a non-increasing function of h.

Hence the fitted function takes the form

Tc(ν, h) = Tc(h) + α(h)ν1/3. (28)

If we expand Tc(h) and α(h) to leading order in h the
fitted function becomes

Tc(ν, h) = T0 + T2h
2 + (α0 + α2h

2)ν1/3. (29)

This requires a linear fit of four parameters. The best fit
yields T0 = 0.171(5), α0 = −0.154(9), T2 = 0.4± 0.9 and
α2 = −0.7± 1.9 with χ2/d.o.f.= 0.43. Note that the T2

value corresponding to the minimal χ2 is positive, which
is forbidden by physical arguments. The χ2 function is
very flat along the T2 direction, so that forcing T2 = 0

chemical potential imbalance
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Contact
To be discussed by next speaker(s)

Intoduced by Tan; OPE: Braaten & Platter; Review: Braaten, arXiv:1008.2922 

Universal Relations for Fermions with Large Scattering Length 7

The pressure relation was actually first derived in Ref. [3] for the special case
of a balanced gas in which the two spin states have equal populations. The
derivation was extended to the general case in Ref. [4].

If there are inelastic 2-body scattering processes with a large energy re-
lease, they will result in a decrease in the number of low-energy atoms. Tan
realized that the rate at which the number density of low-energy atoms
decreases is proportional to the contact density C [7]. The proportionality
constant was first given in Ref. [5]. If there are inelastic 2-body scattering
channels, the scattering length a has a negative imaginary part. The propor-
tionality constant in the universal relation can be expressed in terms of that
complex scattering length:

Inelastic 2-body losses. If there are inelastic 2-body scattering pro-
cesses with a large energy release, the number density of low-energy atoms
decreases at a rate that is proportional to the contact density:

d

dt
nσ(R) = − h̄(−Im a)

2πm|a|2 C(R). (13)

3 What is the Contact?

Given the Tan relations described in Section 2, it is evident that the contact
is a central property of the system. But what is it? In this section, we provide
an intuitive interpretation of the contact. We also provide additional insights
into the contact by giving analytic expressions in some simple cases.

3.1 Intuitive interpretation

An intuitive interpretation of the contact density can be derived from the
universal relation for the density-density correlator in Eq. (7). That relation
can be expressed in the form

〈n1(R+ r1) n2(R+ r2)〉 −→
1

16π2|r1 − r2|2
C(R). (14)

If we integrate both r1 and r2 over a ball of radius s, we obtain

Npair(R, s) −→ s4

4
C(R). (15)

The left side simply counts the number of pairs inside that ball, which is the
product N1N2 of the number of atoms in the two spin states. The volume of
that ball is V = 4

3πs
3. One might naively expect the number of pairs to scale
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Small (compared to a) separations

Number of pairs in small sphere (radius s)

Is the single long distance quantity in several relations
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Figure 5: Left: The contact density versus "1/3 for balanced data together with the linear fit. Right: The

contact density versus filling factor and imbalance. The surface corresponds to the quadratic fit.

[8, 10], and it is related to the contact density C via C =
∫

C (r)d3r, or for homogeneous systems

simply C = CV . The dimensionless quantity C /!2F can be expressed as

C /!2F = (UEint)/(4L
3!2F). (3.2)

Using only balanced data the best fit isC /!2F = 0.1102(11)−0.033(2)"1/3 with #2/d.o.f. = 1.8.

In the presence of an imbalance we expect the interaction energy and hence the contact density to

decrease. A three dimensional fit of the data to (3.1) yieldsC0 = 0.1101(9), $(C)
0 = −0.033(2),

C2 = −0.15(16) and $(C)
2 = −0.29(36), with #2/d.o.f.= 1.5. This is consistent with the bal-

anced fit. The parameter C2 is negative as required. Forcing $
(C)
2 = 0 yields C0 = 0.1099(8),

$
(C)
0 =−0.0322(15) andC2 =−0.01(2), with #2/d.o.f.= 1.5. Fitting to a constant function yields

C (" ,h) = 0.1097(8)−0.0320(14)"1/3 with #2/d.o.f.= 1.4. Figure 5 summarises our results.

3.5 Comparison with the literature

Our final result for Tc using both balanced and imbalanced data, Tc/!F = 0.171(5), is signif-

icantly higher than the previous result from [2], where Tc/!F = 0.152(7). In [11] the result of [2]

was found to agree with a continuous space-time DDMC method. The authors of [3] found an

upper bound of Tc/!F ! 0.15(1). They used an auxiliary field Monte Carlo approach and extracted
Tc using the same approximation as [2] and [11], which might explain the discrepancy between

our results. Through extrapolating Monte Carlo results of low-density neutron matter, the authors

of [12] found Tc/!F = 0.189(12), which agrees with our result. There are also results obtained

with the Restricted Path Integral Monte Carlo method [13],Tc/!F ≈ 0.245, and an upper bound of

Tc/!F < 0.14 obtained with a hybrid Monte Carlo method [14]. Results from an !-expansion are

also available [15]. For comparison, the critical temperature in the BEC limit is TBEC = 0.218!F .

Our result for the energy per particle E/EFG = 0.440(15) shows excellent agreement with the

value E/EFG = 0.45(1) at Tc quoted in [3]. The value quoted in [2] is E/N!F = 0.31(1), which

roughly corresponds to E/EFG = 0.52(2). Our result for the chemical potential µ/!F = 0.429(7)

differs from µ/!F = 0.493(14) quoted in [2], but is consistent with the value µ/!F = 0.43(1)

quoted in [3]. Some theoretical predictions for the contact density are also available, but to our

6
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Outlook

✤ DDMC very efficient for small volumes

✤ Scales like (number lattice points)2

✤ Pseudofermion methods (briefly ➙)

✤ Go beyond balanced unitary Fermi gas (lower 
dimensions, gauge fields)



Pseudofermion Monte Carlo

✤ HMC: Molecular dynamics + accept/reject step

✤ Naively scales like the number of lattice points

✤ Requires inversion of sparse matrix

✤ But matrix becomes singular in physical limit

Z =
∫∫∫

Dφ Dζ exp
[
−

(∫∫∫
ζ†Ã−1

ζ +
1
2

φ2

)]

Chen & Kaplan, Wingate, Lee & Schaefer, Lee et al., Drut et al.
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