## Computing Nucleon Magnetic Moments and Electric Polarizabilities with lattice QCD in Background Electric Fields

André Walker-Loud

ElectroMagnetic Collaboration

Strong Interactions: From Methods to Structures 12 - 16 February, 2011



### ElectroMagnetic Collaboration



- Will Detmold (William and Mary)
- Brian Tiburzi (MIT)
- André Walker-Loud (LBNL)



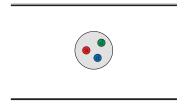
### **Outline**

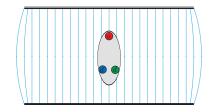
- Motivation
- Background Electric Field
- 3 Lattice Calculation
- Summary and Outlook

Polarizabilities are staple quantities of hadron structure: they measure the "stiffness" of a hadron immersed in a background electromagnetic field



Polarizabilities are staple quantities of hadron structure: they measure the "stiffness" of a hadron immersed in a background electromagnetic field





A description of this low-energy hadron structure from QCD is desirable.



#### comparison of experiment and phenomenological prediction

#### pion

#### two-loop ChPT prediction

U.Burgi; NPB 479(1996), PLB 377(1996) J. Gasser et.al.; NPB 745 (2006)

$$\alpha_E^{\pi} = 2.4 \pm 0.5$$

$$\beta_E^{\pi} = -2.1 \pm 0.5$$

#### experimental determination

Y.M. Antipov et.al.; PLB 121(1983), Z.Phys. C 26 (1985)

$$\alpha_E^{\pi} = -\beta_M^{\pi} = 6.8 \pm 1.4 \pm 1.2$$

assumed 
$$(\alpha_E^\pi = -\beta_M^\pi)$$

#### nucleon

| Polarizability                        | Proton          | Neutron        |                            |
|---------------------------------------|-----------------|----------------|----------------------------|
| $\alpha [10^{-4}  \text{fm}^3]$       | $11.9 \pm 1.4$  | 12.5 ± 1.7 ←   | - measured                 |
| $\beta  [10^{-4}  \mathrm{fm}^3]$     |                 | $2.7 \pm 1.8$  |                            |
| $\gamma_1  [10^{-4}  \mathrm{fm}^4]$  | $1.1 \pm 0.25$  | $3.7 \pm 0.4$  |                            |
| $\gamma_2 [10^{-4}  \text{fm}^4]$     | -1.5±0.36       | -0.1±0.5 ←     | <ul><li>expected</li></ul> |
| $\gamma_3  [10^{-4}  \mathrm{fm}^4]$  | $0.2 \pm 0.24$  | $0.4 \pm 0.5$  | (theoretical               |
| $\gamma_4  [10^{-4}  \text{fm}^4]$    | $3.3 \pm 0.11$  | $2.3 \pm 0.35$ | disagreements)             |
| $\gamma_{\pi} [10^{-4}  \text{fm}^4]$ | $-38.7 \pm 1.8$ | $58.6 \pm 4.0$ | <b>3</b>                   |







- Compass at CERN will measure pion and kaon polarizabilites through Primakoff process
- Compton MAX-lab (Lund) will extract neutron EM polarizabilities from Compton scattering on deuterium
- HI $\gamma$ S TUNL will make high precision measurements of proton and neutron electromagnetic and spin polarizabilites



Lattice Calculation

### Chiral non-analytic physics:

$$\alpha_E^{\pi^\pm} = \frac{8\alpha_{f.s.}}{f_\pi^2} \frac{L_9 + L_{10}}{m_\pi}$$
 LO  $\chi$ PT 
$$\alpha_E^N = \frac{5\alpha_{f.s.}}{192\pi f_\pi^2} \frac{1}{m_\pi} + \Delta \text{-contributions}$$
 NLO  $\chi$ PT (leading loop) 
$$\beta_B^N = \frac{\alpha_{f.s.}}{384\pi f_\pi^2} \frac{1}{m_\pi} + \Delta \text{-contributions}$$
 NLO  $\chi$ PT (leading loop) 
$$\gamma_{E_1E_1}^N = -\frac{5\alpha_{f.s.}}{192\pi^2 f_\pi^2} \frac{1}{m_\pi^2} + \Delta \text{-contributions}$$
 NLO  $\chi$ PT (leading loop)

time varying  $\mathcal{E}$ -field

For sufficiently low energy ( $\omega \ll m_{\pi}$ ), a spin 1/2 baryon has the effective Hamiltonian

Lattice Calculation

$$\begin{split} H_{\text{eff}} &= \frac{(\vec{p} - Q\vec{A})^2}{2M} + Q\phi - \frac{1}{2}4\pi \bigg(\alpha \vec{\mathcal{E}}^2 + \beta \vec{\mathcal{B}}^2 \\ & \gamma_{\textbf{E}_1\textbf{E}_1} \vec{\sigma} \cdot \vec{\mathcal{E}} \times \dot{\vec{\mathcal{E}}} + \gamma_{\textbf{M}_1\textbf{M}_1} \vec{\sigma} \cdot \vec{\mathcal{B}} \times \dot{\vec{\mathcal{B}}} + \gamma_{\textbf{M}_1\textbf{E}_2} \sigma_i \mathcal{E}_{ij} \mathcal{B}_j + \gamma_{\textbf{E}_1\textbf{M}_2} \sigma_i \mathcal{B}_{ij} \mathcal{E}_j \bigg) \end{split}$$

where

$$\mathcal{E}_{ij} = \frac{1}{2} (\nabla_i \mathcal{E}_j + \nabla_j \mathcal{E}_i) \qquad \qquad \mathcal{B}_{ij} = \frac{1}{2} (\nabla_i \mathcal{B}_j + \nabla_j \mathcal{B}_i)$$

$$\gamma_{E_1 E_1} = -\gamma_1 - \gamma_3 \qquad \qquad \gamma_{M_1 M_1} = \gamma_4$$

$$\gamma_{E_1 M_2} = \gamma_3 \qquad \qquad \gamma_{M_1 E_2} = \gamma_2 + \gamma_4$$

For specific choices of  $A_{\mu}$ , one can isolate the various (spin) polarizabilites W. Detmold, B.C. Tiburzi, AWL PRD 73 (2006).



For our calculation, we want Euclidean action which respects periodic boundary conditions (hyper-torus)

Lattice Calculation

$$\begin{split} e^{-i\int d^4x_M \frac{1}{4}F_{\mu\nu}F^{\mu\nu}} &= e^{i\int d^4x_M \frac{1}{2}\left(\mathcal{E}_M^2 - \mathcal{B}_M^2\right)} \\ &\longrightarrow e^{-\int d^4x_E \frac{1}{4}F_{\mu\nu}F_{\mu\nu}} &= e^{-\int d^4x_E \frac{1}{2}\left(\mathcal{E}_E^2 + \mathcal{B}_E^2\right)} \end{split}$$

In this way, the U(1) gauge links are given by a phase

$$U_{\mu}(x) = e^{iaqA_{\mu}(x)}$$

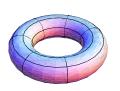
#### Consequences:

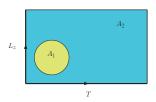
$$M(\mathcal{E}_M) = M_0 - 2\pi\alpha\mathcal{E}_M^2 + \ldots \longrightarrow M(\mathcal{E}_E) = M_0 + 2\pi\alpha\mathcal{E}_E^2 + \ldots$$



Lattice Calculation

# On a compact torus, not all values of the field strength are allowed: G. 't Hooft NPB 153 (1979)



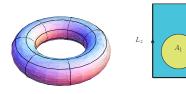


$$0=\Phi=\Phi_1+\Phi_2$$

$$\exp\{-iq\mathcal{E}A_2\} = \exp\{iq\mathcal{E}A_1\}$$

$$A_1 = TL_z - A_2$$

# On a compact torus, not all values of the field strength are allowed: G. 't Hooft NPB 153 (1979)



$$0 = \Phi = \Phi_1 + \Phi_2 \qquad A_1 = TL_z - A_2$$

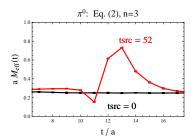
$$\exp\{-iq\mathcal{E}A_2\} = \exp\{iq\mathcal{E}A_1\}$$

$$\exp\{-iq\mathcal{E}A_2\} = \exp\{iq\mathcal{E}(TL_z - A_2)\} \qquad \longrightarrow \exp\{iq\mathcal{E}TL_z\} = 1$$

 $q\mathcal{E} = \frac{2\pi}{TI_{\pi}}n$ 

for n = 1, 2, ...

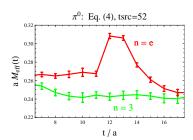
#### Non-Quantized



• 
$$n = 3$$
,  $t_{src} = 0$ 

• 
$$n = 3$$
,  $t_{src} = 52$ 

#### Quantized



• 
$$n = 3$$
,  $t_{src} = 52$ 

• 
$$n = e$$
,  $t_{src} = 52$ 

$$aM_{eff}(t) = \ln\left(rac{C(t)}{C(t+1)}
ight)$$



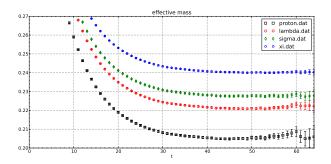
## In free ( $\mathcal{E}M$ ) field, hadron 2-point correlation functions

$$C(t) = \sum_{n} Z_n e^{-E_n t}$$
  $\lim_{t \to \infty} C(t) = Z_0 e^{-E_0 t}$ 

form effective mass

$$m_{ ext{eff}}(t) = rac{1}{d} \ln \left( rac{C(t)}{C(t+d)} 
ight)$$

Lattice Calculation





In a background field, what do we expect the correlation functions to look like?

$$J = 0, Q = 0; C(t, \mathcal{E}) = \sum_{n} Z_{n}(\mathcal{E}) e^{-E_{n}(\mathcal{E})t}$$

$$J = 1/2, Q = 0; C(t, \mathcal{E}) = \sum_{n} Z_{n}(\mathcal{E}, \mu) e^{-E_{n}(\mathcal{E}, \mu)t}$$

$$J = 0, Q = 1; C(t, \mathcal{E}, \mu) = \sum_{n} Z_{n}(\mathcal{E}) G(E_{n}, \mathcal{E}, t)$$

$$J = 1/2, Q = 1; C(t, \mathcal{E}, \mu) = \sum_{n} Z_{n}(\mathcal{E}, \mu) G(E_{n}, \mathcal{E}, \mu, t)$$

#### **Hadron Correlation Functions**

Consider spin-less, relativistic particle of unit charge coupled to an electric field

Lattice Calculation

$$\mathcal{L} = \textit{D}_{\mu}\pi^{\dagger}\textit{D}_{\mu}\pi + \textit{m}_{\text{eff}}^{2}\pi^{\dagger}\pi, \quad \textit{D}_{\mu} = \partial_{\mu} + \textit{i}\textit{A}_{\mu}, \quad \textit{A}_{\mu} = (0,0,-\mathcal{E}\textit{t},0)$$

integrating by parts and changing variables

$$D^{-1} = \rho_\tau^2 + \mathcal{E}^2 \tau^2 + E_{k_\perp}^2 \equiv 2 \left(\mathcal{H} + \frac{1}{2} E_{k_\perp}^2 \right), \label{eq:definition}$$

$$\tau = t - \frac{k_z}{\mathcal{E}}, \qquad \qquad E_{k_\perp}^2 = E_k^2 - k_z^2$$

solution B.C. Tiburzi Nucl. Phys. A 814 (2008)

$$\begin{split} &D(\tau',\tau) = \frac{1}{2} \int_0^\infty ds \langle \tau',s | \tau,0 \rangle e^{-s E_{k_\perp}^2/2} \\ &\langle \tau',s | \tau,0 \rangle = \sqrt{\frac{\mathcal{E}}{2\pi \sinh \mathcal{E} s}} \exp \left\{ -\frac{\mathcal{E}}{2 \sinh \mathcal{E} s} \left[ (\tau'^2 + \tau^2) \cosh \mathcal{E} s - 2\tau' \tau \right] \right\} \end{split}$$

Take 
$$\tau = 0$$
,  $\vec{k} = 0$ :

$$C(\tau,\mathcal{E}) = \sum_{n} Z_n(\mathcal{E}) G(\tau,\mathcal{E})$$

$$G(\tau,\mathcal{E}) = \frac{1}{2} \int_0^\infty ds \sqrt{\frac{\mathcal{E}}{2\pi \sinh \mathcal{E} s}} \exp \left\{ -\frac{1}{2} \left( \mathcal{E} \tau^2 \coth \mathcal{E} s + s \, m_{\text{eff}}^2 \right) \right\}$$

in the weak field limit

$$\begin{split} &C(\tau,\mathcal{E}) = Z(\mathcal{E}) \exp\left\{-M(\mathcal{E})\tau - \frac{\mathcal{E}^2}{M(\mathcal{E})^4} \left(\frac{1}{6}(M(\mathcal{E})\tau)^3 + \frac{1}{4}(M(\mathcal{E})\tau)^2 + \frac{1}{4}(M(\mathcal{E})\tau)\right)\right\} \\ &M(\mathcal{E}) = M_0 + 2\pi\alpha\mathcal{E}^2 + \mathcal{O}(\mathcal{E}^4) \end{split}$$

computing hadron deformations in background  $\mathcal{E} M$  fields amounts to spectroscopy



#### neutron in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

$$S = \int d^4 x \, \overline{\psi}(x) \left[ \partial \!\!\!/ + E(\mathcal{E}) - rac{\mu(\mathcal{E})}{4M} \sigma_{\mu 
u} F_{\mu 
u} 
ight] \psi(x) \, ,$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$
 $\sigma_{\mu\nu}F_{\mu\nu} = 2\vec{K}\cdot\mathcal{E},$  for background  $\mathcal{E}$ -field and  $\vec{K} = i\vec{\gamma}\gamma_{4}$ 
 $\mu(\mathcal{E}) = \mu + \mu''\mathcal{E}^{2} + \dots$  anomalous magnetic coupling

with  $\vec{\mathcal{E}} = \mathcal{E}\hat{z}$ , construct

$$G_{\pm}(t,\mathcal{E}) \equiv \operatorname{tr}[\mathcal{P}_{\pm}G(t,\mathcal{E})] = Z(\mathcal{E})\left(1 \pm \frac{\mathcal{E}\mu}{2M^2}\right) \exp\left[-t\,\mathcal{E}_{\text{eff}}(\mathcal{E})\right]$$

$$\mathcal{P}_{\pm} = \frac{1}{2} [1 \pm K_3]$$
  $E_{eff} = E(\mathcal{E}) - \frac{\mu(\mathcal{E})^2 \mathcal{E}^2}{8M^3}$  
$$= M + \frac{1}{2} \mathcal{E}^2 \left( 4\pi \alpha_E - \frac{\mu^2}{4M^3} \right) + \dots$$



**Hadron Correlation Functions** 

#### neutron in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

$$S = \int d^4x \, \overline{\psi}(x) \left[ \partial \!\!\!/ + E(\mathcal{E}) - \frac{\mu(\mathcal{E})}{4M} \sigma_{\mu\nu} F_{\mu\nu} \right] \psi(x) \, , \label{eq:S}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$
 $\sigma_{\mu\nu}F_{\mu\nu} = 2\vec{K}\cdot\mathcal{E},$  for background  $\mathcal{E}$ -field and  $\vec{K} = i\vec{\gamma}\gamma_{4}$ 
 $\mu(\mathcal{E}) = \mu + \mu''\mathcal{E}^{2} + \dots$  anomalous magnetic coupling

with  $\vec{\mathcal{E}} = \mathcal{E}\hat{z}$ , construct

$$G_{\pm}(t,\mathcal{E}) \equiv \mathrm{tr}[\mathcal{P}_{\pm}G(t,\mathcal{E})] = Z(\mathcal{E})\left(1 \pm rac{\mathcal{E}\mu}{2M^2}
ight) \exp\left[-t\,E_{\mathrm{eff}}(\mathcal{E})
ight]\,,$$

$$\begin{split} \mathcal{P}_{\pm} &= \frac{1}{2} \left[ 1 \pm \textit{K}_{3} \right] \qquad \textit{E}_{\textit{eff}} = \textit{E}(\mathcal{E}) - \frac{\mu(\mathcal{E})^{2} \mathcal{E}^{2}}{8\textit{M}^{3}} \\ &= \textit{M} + \frac{1}{2} \mathcal{E}^{2} \left( 4\pi\alpha_{\textit{E}} - \frac{\mu^{2}}{4\textit{M}^{3}} \right) + \dots \end{split}$$



proton in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

$$\begin{split} \mathcal{S} &= \int d^4x \, \overline{\psi}(x) \left[ \not \! D + E(\mathcal{E}) - \frac{\widetilde{\mu}(\mathcal{E})}{4M} \sigma_{\mu\nu} F_{\mu\nu} \right] \psi(x) \,, \\ D_{\mu} &= \partial_{\mu} + i Q A_{\mu} \qquad \qquad \mu = Q + \widetilde{\mu}(0) \end{split}$$

boost projected correlation functions

$$\begin{split} G_{\pm}(t,\mathcal{E}) &= Z(\mathcal{E}) \left(1 \pm \frac{\tilde{\mu}\mathcal{E}}{2M^2}\right) D\left(t, E_{\textit{eff}}(\mathcal{E})^2 \mp Q\mathcal{E}, \mathcal{E}\right) \\ D(t, E^2, \mathcal{E}) &= \int_0^\infty ds \sqrt{\frac{Q\mathcal{E}}{2\pi \sinh(Q\mathcal{E}s)}} \exp\left[-\frac{Q\mathcal{E}t^2}{2} \coth(Q\mathcal{E}s) - \frac{E^2s}{2}\right] \end{split}$$

#### Results I am going to present are from

- Mesons: W. Detmold, B.C. Tiburzi, AWL PRD 79 (2009)
- proton and neutron: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

To date, we have set  $q_{sea} = 0$  (Quenched  $\mathcal{E}M$ )

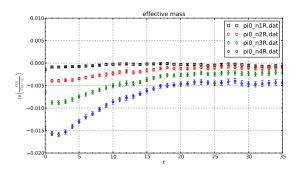
$$m_\pi \sim 390$$
 MeV

$$L=2.5$$
 fm

TABLE I: Propagators generated to date with our 2008-09 and 2009-10 USQCD allocations.

| V                   | $a_s$ | $a_s/a_t$ | $a_t m_u^0$ | $a_t m_s^0$ | $m_{\pi}$ | $m_K$ | Field    | $N_{src} \times N_{cfg}$ | total # of     |
|---------------------|-------|-----------|-------------|-------------|-----------|-------|----------|--------------------------|----------------|
|                     | [fm]  |           |             |             | [MeV]     | [MeV] | Strength |                          | props(u, d, s) |
| $20^{3} \times 128$ | 0.123 | 3.5       | -0.0840     | -0.0743     | 390       | 546   | 0        | $15 \times 200$          | 6,000          |
|                     |       |           |             |             |           |       | ±1       | $15 \times 200$          | 9,000          |
|                     |       |           |             |             |           |       | $\pm 2$  | $10 \times 200$          | 6,000          |
|                     |       |           |             |             |           |       | $\pm 3$  | $10 \times 200$          | 6,000          |
|                     |       |           |             |             |           |       | ±4       | $10 \times 200$          | 6,000          |
| $24^{3} \times 128$ | 0.123 | 3.5       | -0.0840     | -0.0743     | 390       | 546   | 0        | $10 \times 195$          | 3,900          |
|                     |       |           |             |             |           |       | ±1       | $10 \times 195$          | 5,850          |
|                     |       |           |             |             |           |       | $\pm 2$  | $10 \times 195$          | 5,850          |
|                     |       |           |             |             |           |       | $\pm 3$  | $10 \times 195$          | 5,850          |
|                     |       |           |             |             |           |       | ±4       | $10 \times 195$          | 5,850          |
| $32^3 \times 256$   | 0.123 | 3.5       | -0.0860     | -0.0743     | 225       | 467   | 0        | $7 \times 106$           | 2,226          |

 $\pi^0$ 



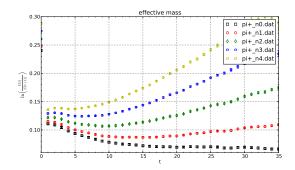
$$G(t) = \frac{C_n(t)}{C(t)}$$



 $\pi^0$ 

#### Numerical Results

$$\pi^+$$



Lattice Calculation

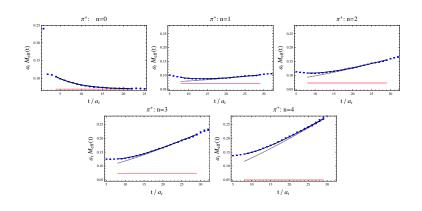
0000000000000000

$$C(\tau, \mathcal{E}) = \sum_{n} Z_{n}(\mathcal{E})G(\tau, \mathcal{E})$$

$$G( au, \mathcal{E}) = rac{1}{2} \int_0^\infty ds \sqrt{rac{\mathcal{E}}{2\pi \sinh \mathcal{E} s}} \exp \left\{ -rac{1}{2} \left( \mathcal{E} au^2 \coth \mathcal{E} s + s \, m_{ ext{eff}}^2 
ight) 
ight\}$$



 $\pi^+$ 



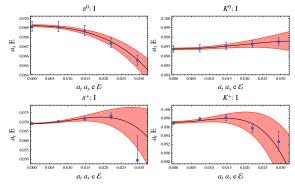
|                  | n         |           |           |            |              |
|------------------|-----------|-----------|-----------|------------|--------------|
|                  | 0         | 1         | 2         | 3          | 4            |
| $m(\mathcal{E})$ | 0.0691(4) | 0.0702(6) | 0.0718(8) | 0.0733(16) | 0.0497(129)  |
|                  |           |           |           | 1014811    | = 1 = 1 = 00 |

Lattice Calculation

Motivation

#### π<sup>0</sup>: I $K^0$ : I 0.069 0.099 0.068 $a_t \to$ 0.067 0.09 0.066 0.096 0.065 0.095 0.005 0.010 0.015 0.020 0.025 0.005 0.010 0.015 0.025 0.030 0.000 $a_t a_s e \mathcal{E}$ $a_t a_s e \mathcal{E}$ $\pi^+$ : I $K^+$ : I 0.075 0.098 0.07 ш $a_t \to$ 0.065 0.094 $a_{\rm r}$ 0.092 0.055 0.090 0.050 0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.015 0.020 0.025 $a_t a_s e \mathcal{E}$ $a_t a_s e \mathcal{E}$

 $m(\mathcal{E}) = m_0 + \alpha_E^{latt} \mathcal{E}^2 + \bar{\alpha}_{EFF}^{latt} \mathcal{E}^4$ 

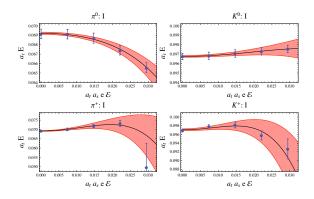


$$m(\mathcal{E}) = m_0 + \alpha_E^{latt} \mathcal{E}^2 + \bar{\alpha}_{EEE}^{latt} \mathcal{E}^4$$

|                               | $\pi^0$    | $\pi^+$  | $K^0$     | $K^+$   |
|-------------------------------|------------|----------|-----------|---------|
| $\alpha_{\it E}^{\it latt}$   | -2.6(5)(9) | 18(4)(6) | 1.5(4)(7) | 8(3)(1) |
| $ar{lpha}_{\it E}^{\it latt}$ | 1.8(5)     | 24(10)   | 0.6(5)    | 17(5)   |



Numerical Results



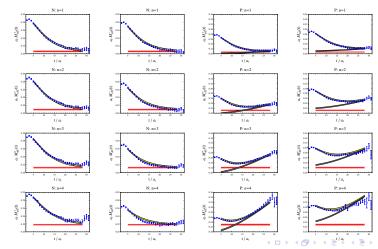
| $m_\pi \simeq 390$ MeV           | $\pi^0$     | $\pi^+$   | $K^0$      | $K^+$        |
|----------------------------------|-------------|-----------|------------|--------------|
| $\alpha_E[10^{-4}{\rm fm}^{-3}]$ | -0.20(4)(7) | 1.4(3)(5) | 0.11(3)(5) | 0.62(23)(08) |

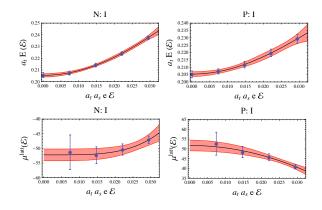
$$\alpha_{F}^{\pi^{\pm}} = 2.4 \pm 0.5$$

Burgi (1996) and Gasser et. al. (2006)



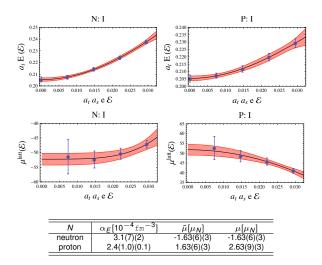
#### Neutron and Proton effective mass





| N       | $lpha_{\it E}^{\it latt}$ | $	ilde{\mu}^{\it latt}$ | $\mu^{latt}$ |
|---------|---------------------------|-------------------------|--------------|
| neutron | 40(9)(2)                  | -52(2)(1)               | -52(2)(1)    |
| proton  | 32(13)(1)                 | 52(3)(1)                | 83.9(3)(1)   |





$$\mu_{V}(m_{\pi} \simeq 390 \text{ MeV}) = 4.3(2)(1)(1)[\mu_{N}]$$

$$\mu_V^{\text{phys}} = 4.7 [\mu_N]$$

In the last two years, we have established a program to compute polarizabilites of hadrons, as well as magnetic moments of spin-1/2 baryons utilizing background electric fields.

Several systematics we need to address

- sea quark electric charges
- As polarizabilites are singular in the chiral limit, they are also sensitive to finite-volume effects

|       | $m_{\pi}$ [MeV] |              |            |           |  |
|-------|-----------------|--------------|------------|-----------|--|
| L[fm] | 450             | 390          | 300        | 225       |  |
| 2.5   | 0               | ✓            | 0          |           |  |
| 3.0   |                 | $\checkmark$ | $\bigcirc$ |           |  |
| 4.0   |                 | $\otimes$    | $\otimes$  | $\otimes$ |  |

#### Future:

- utilize background magnetic fields
- explore non-constant fields to extract nucleon spin-polarizabilites
- explore methods to include sea-quark electromagnetic charges

