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Polarizabilities are staple quantities of hadron structure: they
measure the “stiffness” of a hadron immersed in a background
electromagnetic field
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Polarizabilities are staple quantities of hadron structure: they
measure the “stiffness” of a hadron immersed in a background
electromagnetic field
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A description of this low-energy hadron structure from QCD is
desirable.
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comparison of experiment and phenomenological prediction

Motivation: exp./phenom.

απ
E = 2.4 ± 0.5

two-loop ChPT prediction

U.Burgi; NPB 479(1996), PLB 377(1996)
J. Gasser et.al.; NPB 745 (2006)

experimental determination

Y.M. Antipov et.al.;  PLB 121(1983), Z.Phys. C 26 (1985)

απ
E = −βπ

M = 6.8 ± 1.4 ± 1.2

(απ
E = −βπ

M )assumed

pion

nucleon

1

I. STATIC AND QUASI-STATIC ELECTROMAGNETIC PROPERTIES OF HADRONS

Study of the electromagnetic structure of hadrons has a long history beginning with the form-
factor experiments of R. Hofstadter in the 1950s, which showed conclusive evidence for the compos-
ite structure of the nucleon. At low momentum transfer, the form factors are sensitive only to the
longest range electromagnetic structure parametrized in terms of hadronic multi-pole moments.
Lattice studies of hadronic form factors are making significant progress towards first principles
confrontation with experimental form factor data, but a notable exception exists. The extraction
of static multi-pole moments requires a significant momentum extrapolation down from the lowest
available lattice momentum transfer.

Beyond static multi-pole moments, hadrons possess quasi-static properties that characterize
their behavior in applied electromagnetic fields. The hadron deforms in response to the applied
field as the internal constituents struggle against the strong force to align or anti-align themselves
with the external field. These quasi-static properties can be categorized in terms of multi-pole
polarizabilities. The electric polarizability of the proton, for example, characterizes the strength
of the induced electric dipole moment of the proton in an electric field.

Experimentally polarizabilities can be accessed through Compton scattering and have been the
subject of two decades of significant effort. For unpolarized scattering, the first structure dependent
contributions in the energy expansion of the Compton amplitude are the electric polarizability, α,
and the magnetic polarizability, β. If target and/or photon beam polarizations are controlled,
low-energy Compton scattering on spin-half targets is sensitive to additional so-called spin polar-
izabilities [1], conventionally labeled γ1–γ4 which encode the spin-dependent interaction strengths
of the induced multi-pole moments with the external fields.

The experimental knowledge of the various polarizabilities is summarized in Table I below. A
number of areas of low energy electromagnetic structure where we do not have a precise under-
standing particularly stand out:

1) Spin polarizabilities: theoretical disagreements and very little experimental knowledge.

2) Magnetic polarizabilities of the nucleon: errors are essentially 100%.

3) Pion polarizabilities: experiments disagree with two independent two-loop χPT analyses [2].

When hadrons of non-zero strangeness are also considered, information becomes considerably more
scarce.

Polarizability Proton Neutron π+

α [10−4 fm3] 11.9 ± 1.4 12.5 ± 1.7 5.8 ± 1.5

β [10−4 fm3] 1.2 ± 0.9 2.7 ± 1.8 −5.8 ± 1.5

γ1 [10−4 fm4] 1.1±0.25 3.7±0.4 —

γ2 [10−4 fm4] -1.5±0.36 -0.1±0.5 —

γ3 [10−4 fm4] 0.2±0.24 0.4±0.5 —

γ4 [10−4 fm4] 3.3±0.11 2.3±0.35 —

γπ [10−4 fm4] −38.7± 1.8 58.6 ± 4.0 —

TABLE I: Measured (roman) and expected (italic) values of electromagnetic and spin polarizabilities. Mea-
sured values for the nucleons are from a recent review [5]. Expected spin polarizabilities are from [3], and
assume central values from NNLO chiral perturbation theory analyses. Here the backward spin polarizabil-
ity is γπ = γ1 + γ2 + 2γ4. Pion electromagnetic polarizabilities are taken from the recent experiment done
at Mainz [6], assuming (α + β)π+ = 0 and citing only the systematic error.

measured

expected

(theoretical 
disagreements)

βπ
E = −2.1 ± 0.5
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Compass at CERN will measure pion and kaon
polarizabilites through Primakoff process
Compton MAX-lab (Lund) will extract neutron EM
polarizabilities from Compton scattering on deuterium
HIγS TUNL will make high precision measurements of
proton and neutron electromagnetic and spin polarizabilites
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Chiral non-analytic physics:

απ
±

E =
8αf .s.

f 2
π

L9 + L10

mπ
LO χPT

αN
E =

5αf .s. g2
A

192πf 2
π

1
mπ

+ ∆-contributions NLO χPT (leading loop)

βN
B =

αf .s. g2
A

384πf 2
π

1
mπ

+ ∆-contributions NLO χPT (leading loop)

γN
E1E1 = −5αf .s. g2

A

192π2f 2
π

1
m2
π

+ ∆-contributions NLO χPT (leading loop)

time varying E-field
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For sufficiently low energy (ω << mπ), a spin 1/2 baryon has
the effective Hamiltonian

Heff =
(~p −Q~A)2

2M
+ Qφ− 1

2
4π
(
α~E2 + β ~B2

γE1E1~σ · ~E × ~̇E + γM1M1~σ · ~B × ~̇B + γM1E2σiEijBj + γE1M2σiBijEj

)
where

Eij =
1
2

(∇iEj +∇jEi ) Bij =
1
2

(∇iBj +∇jBi )

γE1E1 = −γ1 − γ3 γM1M1 = γ4

γE1M2 = γ3 γM1E2 = γ2 + γ4

For specific choices of Aµ, one can isolate the various (spin)
polarizabilites W. Detmold, B.C. Tiburzi, AWL PRD 73 (2006).
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For our calculation, we want Euclidean action which respects
periodic boundary conditions (hyper-torus)

e−i
∫

d4xM
1
4 FµνFµν = ei

∫
d4xM

1
2(E2

M−B2
M)

−→ e−
∫

d4xE
1
4 FµνFµν = e−

∫
d4xE

1
2(E2

E+B2
E)

In this way, the U(1) gauge links are given by a phase

Uµ(x) = eiaqAµ(x)

Consequences:

M(EM) = M0 − 2παE2
M + . . . −→ M(EE) = M0 + 2παE2

E + . . .
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On a compact torus, not all values of the field strength are
allowed: G. ‘t Hooft NPB 153 (1979)

A2

T

Lz
A1

0 = Φ = Φ1 + Φ2 A1 = TLz − A2

exp {−iqEA2} = exp {iqEA1}
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On a compact torus, not all values of the field strength are
allowed: G. ‘t Hooft NPB 153 (1979)

A2

T

Lz
A1

0 = Φ = Φ1 + Φ2 A1 = TLz − A2

exp {−iqEA2} = exp {iqEA1}
exp {−iqEA2} = exp {iqE (TLz − A2)} −→ exp {iqETLz} = 1

qE =
2π
TLz

n for n = 1, 2, . . .
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Non-Quantized
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Hadron Correlation Functions

In free (EM) field, hadron 2-point correlation functions

C(t) =
∑

n

Zne−Ent lim
t→∞

C(t) = Z0e−E0t

form effective mass

meff (t) =
1
d

ln
(

C(t)
C(t + d)

)
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Hadron Correlation Functions

In a background field, what do we expect the correlation
functions to look like?

J = 0,Q = 0; C(t , E) =
∑

n

Zn(E)e−En(E)t

J = 1/2,Q = 0; C(t , E) =
∑

n

Zn(E , µ)e−En(E,µ)t

J = 0,Q = 1; C(t , E , µ) =
∑

n

Zn(E)G(En, E , t)

J = 1/2,Q = 1; C(t , E , µ) =
∑

n

Zn(E , µ)G(En, E , µ, t)
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Hadron Correlation Functions

Consider spin-less, relativistic particle of unit charge coupled to an
electric field

L = Dµπ†Dµπ + m2
effπ
†π, Dµ = ∂µ + iAµ, Aµ = (0,0,−E t ,0)

integrating by parts and changing variables

D−1 = p2
τ + E2τ2 + E2

k⊥ ≡ 2
(
H+

1
2

E2
k⊥

)
,

τ = t − kz

E , E2
k⊥ = E2

k − k2
z

solution B.C. Tiburzi Nucl.Phys. A 814 (2008)

D(τ ′, τ) =
1
2

∫ ∞

0
ds〈τ ′, s|τ,0〉e−sE2

k⊥
/2

〈τ ′, s|τ,0〉 =
√

E
2π sinh Es

exp
{
− E

2 sinh Es
[
(τ ′2 + τ2) cosh Es − 2τ ′τ

]}

A. Walker-Loud emc



Motivation Background Electric Field Lattice Calculation Summary and Outlook

Hadron Correlation Functions

Take τ = 0, ~k = 0:

C(τ, E) =
∑

n

Zn(E)G(τ, E)

G(τ, E) =
1
2

∫ ∞
0

ds

√
E

2π sinh Es
exp

{
−1

2

(
Eτ 2 coth Es + s m2

eff

)}
in the weak field limit

C(τ, E) = Z (E) exp
{
−M(E)τ − E2

M(E)4

(
1
6

(M(E)τ)3 +
1
4

(M(E)τ)2 +
1
4

(M(E)τ)

)}
M(E) = M0 + 2παE2 +O(E4)

computing hadron deformations in background EM fields amounts to
spectroscopy
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Hadron Correlation Functions

neutron in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

S =

∫
d4x ψ(x)

[
∂/+ E(E)− µ(E)

4M
σµνFµν

]
ψ(x) ,

Fµν = ∂µAν − ∂νAµ,

σµνFµν = 2~K · E , for background E-field and ~K = i~γγ4

µ(E) = µ+ µ′′E2 + . . . anomalous magnetic coupling

with ~E = E ẑ, construct

G±(t , E) ≡ tr[P±G(t , E)] = Z (E)

(
1± Eµ

2M2

)
exp [−t Eeff (E)] ,

P± =
1
2

[1± K3] Eeff = E(E)− µ(E)2E2

8M3

= M +
1
2
E2
(

4παE −
µ2

4M3

)
+ . . .
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Hadron Correlation Functions

neutron in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

S =

∫
d4x ψ(x)

[
∂/+ E(E)− µ(E)

4M
σµνFµν

]
ψ(x) ,

Fµν = ∂µAν − ∂νAµ,

σµνFµν = 2~K · E , for background E-field and ~K = i~γγ4

µ(E) = µ+ µ′′E2 + . . . anomalous magnetic coupling

with ~E = E ẑ, construct

G±(t , E) ≡ tr[P±G(t , E)] = Z (E)

(
1± Eµ

2M2

)
exp [−t Eeff (E)] ,

P± =
1
2

[1± K3] Eeff = E(E)− µ(E)2E2

8M3

= M +
1
2
E2
(

4παE −
µ2

4M3

)
+ . . .
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Hadron Correlation Functions

proton in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

S =

∫
d4x ψ(x)

[
D/+ E(E)− µ̃(E)

4M
σµνFµν

]
ψ(x) ,

Dµ = ∂µ + iQAµ µ = Q + µ̃(0)

boost projected correlation functions

G±(t , E) = Z (E)

(
1± µ̃E

2M2

)
D
(

t ,Eeff (E)2 ∓QE , E
)

D(t ,E2, E) =

∫ ∞
0

ds

√
QE

2π sinh(QEs)
exp

[
−QE t2

2
coth(QEs)− E2s

2

]
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Numerical Results

Results I am going to present are from
mesons: W. Detmold, B.C. Tiburzi, AWL PRD 79 (2009)

proton and neutron: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

To date, we have set qsea = 0 (Quenched EM)

mπ ∼ 390 MeV L = 2.5 fm
3

TABLE I: Propagators generated to date with our 2008-09 and 2009-10 USQCD allocations.

V as as/at atm
0
u atm

0
s mπ mK Field Nsrc × Ncfg total # of

[fm] [MeV] [MeV] Strength props(u, d, s)

203 × 128 0.123 3.5 −0.0840 −0.0743 390 546 0 15 × 200 6, 000

±1 15 × 200 9, 000

±2 10 × 200 6, 000

±3 10 × 200 6, 000

±4 10 × 200 6, 000

243 × 128 0.123 3.5 −0.0840 −0.0743 390 546 0 10 × 195 3, 900

±1 10 × 195 5, 850

±2 10 × 195 5, 850

±3 10 × 195 5, 850

±4 10 × 195 5, 850

323 × 256 0.123 3.5 −0.0860 −0.0743 225 467 0 7 × 106 2, 226

cation furthering our project goals. Our current proposal reflects our commitment to maintaining
our growing level of usage.

In Table I, we detail the use of our 2008-2009 and 2009-2010 USQCD allocations. We have
computed a large number of clover-improved Wilson propagators on an ensemble of anisotropic
gauge configurations with three flavors of dynamical clover fermions [21, 22]. Multiple inversions
were made efficient using the EigCG inverter [23], and empirically we see a factor of three speed up
(this is less than optimal because we have utilized the inverter for only 10 right-hand sides at a time).
These propagators were computed with both zero and non-zero values of the electric field in Eq. (1).
Our choice of action is motivated by several restrictions. The method for extracting physical results
from dynamical lattice actions in which the sea-quark charges are turned off depends crucially on
partially quenched chiral perturbation theory, and therefore we need relatively light pion masses.
Second, to satisfy the quantization conditions, e.g. Eq. (2), while maintaining sufficiently small
background fields, we need large lattices. Thirdly, the use of clover improved fermions will reduce
lattice spacing errors (additionally the electromagnetic currents from the background fields are
automatically O(a) improved) and also allow for a large number of propagator inversions, reducing
the statistical noise, which is currently our largest source of uncertainty for baryons. Fourthly,
and crucially, the anisotropy allows for finer resolution of the time direction leading to better
determination of particle spectra, and better fits to non-standard time dependence of charged
particle correlation functions (see results below).

B. Selected Results

The calculations detailed in Table III have led so far to two numerical publications:

• “Extracting Electric Polarizabilities from Lattice QCD,” William Detmold, Brian Tiburzi
and André Walker-Loud, Phys. Rev. D79:094505 (2009), [arXiv:0904.1586].

• “Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in
Background Electric Fields,” William Detmold, Brian Tiburzi and André Walker-Loud, to
be published in Phys. Rev. D, [arXiv:1001.1131].
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Numerical Results
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Numerical Results
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Numerical Results
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∫ ∞
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Numerical Results
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Numerical Results
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FIG. 2: Plots of correlated fits to the electric field dependence of neutral meson energies. For each

field strength, the bootstrap averaged energies are plotted with error bars reflecting the uncertainty

from statistics and fitting. Fits I and II to the E-dependence are also shown with the plotted bands

reflecting the uncertainty in the parameters appearing in Eq. (7).

From the extracted polarizabilities, we can investigate the electric field dependence of
meson energies. This is done in Fig. 2 for the neutral pion and neutral kaon. For the con-
nected part of the neutral pion, we see downward curvature of the energy with respect to
increasing E , while for the neutral kaon the energy is comparatively quite flat. In physical
units, the polarizabilities απ0

E , and αK0

E , are not consistent with näıve expectations. To at-
tempt a qualitative explanation for the size of the ground state polarizabilities, we compare
our results with predictions from chiral perturbation theory. The neutral pion electric polar-
izability at one-loop is negative [34, 35]. While this is surprising, the one-loop polarizability
arises solely from the disconnected contraction between quark basis ηu and ηd mesons [11].
Hence the negative sign owes to group theory weight of ηu versus ηd in the pion interpolating
field, π0 ∼ 1√

2
(ηu − ηd). As we have only calculated the connected part of the correlator,

chiral perturbation theory suggests that απ0

E is an order of magnitude smaller than the näıve
expectation. While our result is of this magnitude, it is of the wrong sign (the average of
ηu and ηd polarizabilities should be positive). This negative value could arise from volume
effects, which are known to be non-vanishing at next-to-leading order in chiral perturbation
theory [23]. For the neutral kaon polarizability, the one-loop chiral computation vanishes,
even with electrically neutral sea quarks [12]. Our extracted neutral kaon polarizability,
however, is smaller than typical two-loop contributions. Because the dominant volume cor-
rections arise from pion loops, we expect the neutral pion and kaon volume effects to be
of the same size. If the negative result for the connected π0 is due to volume corrections,
then the near vanishing result for the K0 could be due to a near cancelation between the
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FIG. 5: Plots of the electric field dependence of the extracted rest energies for charged mesons.

is produced by considering the correlation function at successive times. The relativistic
propagator for a charged particle in Eq. (9) depends on the time, the electric field, and rest
energy, D = D

(
t, E(E), E

)
, albeit through a complicated one-dimensional integral. Given

numerical data for the correlation function, g(t, E), we can successively solve6 for the effective
energy in time by considering the ratio

D(t + 1, Eeff, E)

D(t, Eeff, E)
=

g(t + 1, E)

g(t, E)
, (14)

with the value of the electric field, E , as input. This produces the effective energy as a
function of time, Eeff(t). Effective energy plots for the charged pion and kaon are shown in
Fig. 4. The effective energy should plateau over long times to the rest energy of the charged
particle. From the figure, however, we see that contributions from the first excited state
linger, and plateaus are not quite reached before the noise grows substantially. Nonetheless,
we clearly see behavior reminiscent of the neutral particle effective mass plots in Fig. 1. This
confirms that Eq. (9) properly describes the correlation function of a charged particle in an
electric field.

Finally in Fig. 5, we plot the electric field dependence of the extracted rest energies of
the charged pion and kaon. There is striking non-monotonic behavior which indicates the
presence of quartic and perhaps higher-order terms in the field strength. We can make a

6 Because the effective energy is deduced from the non-linear relation in Eq. (14), there is no guarantee

a solution exists. Ensembles for which no solution can be found at a given time are dropped from the

bootstrap. This only affected error bars the n = 4 effective energy plot for the π+, and only for t ≥ 24,

where on average 5 bootstraps were dropped.
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m(E) = m0 + αlatt
E E2 + ᾱlatt
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0.02 0.09 0.20 0.35

επ =
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' 0.022n2 (as/at = 3.5, L = 20,T = 128)
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FIG. 2: Plots of correlated fits to the electric field dependence of neutral meson energies. For each

field strength, the bootstrap averaged energies are plotted with error bars reflecting the uncertainty

from statistics and fitting. Fits I and II to the E-dependence are also shown with the plotted bands

reflecting the uncertainty in the parameters appearing in Eq. (7).

From the extracted polarizabilities, we can investigate the electric field dependence of
meson energies. This is done in Fig. 2 for the neutral pion and neutral kaon. For the con-
nected part of the neutral pion, we see downward curvature of the energy with respect to
increasing E , while for the neutral kaon the energy is comparatively quite flat. In physical
units, the polarizabilities απ0

E , and αK0

E , are not consistent with näıve expectations. To at-
tempt a qualitative explanation for the size of the ground state polarizabilities, we compare
our results with predictions from chiral perturbation theory. The neutral pion electric polar-
izability at one-loop is negative [34, 35]. While this is surprising, the one-loop polarizability
arises solely from the disconnected contraction between quark basis ηu and ηd mesons [11].
Hence the negative sign owes to group theory weight of ηu versus ηd in the pion interpolating
field, π0 ∼ 1√

2
(ηu − ηd). As we have only calculated the connected part of the correlator,

chiral perturbation theory suggests that απ0

E is an order of magnitude smaller than the näıve
expectation. While our result is of this magnitude, it is of the wrong sign (the average of
ηu and ηd polarizabilities should be positive). This negative value could arise from volume
effects, which are known to be non-vanishing at next-to-leading order in chiral perturbation
theory [23]. For the neutral kaon polarizability, the one-loop chiral computation vanishes,
even with electrically neutral sea quarks [12]. Our extracted neutral kaon polarizability,
however, is smaller than typical two-loop contributions. Because the dominant volume cor-
rections arise from pion loops, we expect the neutral pion and kaon volume effects to be
of the same size. If the negative result for the connected π0 is due to volume corrections,
then the near vanishing result for the K0 could be due to a near cancelation between the
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FIG. 5: Plots of the electric field dependence of the extracted rest energies for charged mesons.

is produced by considering the correlation function at successive times. The relativistic
propagator for a charged particle in Eq. (9) depends on the time, the electric field, and rest
energy, D = D

(
t, E(E), E

)
, albeit through a complicated one-dimensional integral. Given

numerical data for the correlation function, g(t, E), we can successively solve6 for the effective
energy in time by considering the ratio

D(t + 1, Eeff, E)

D(t, Eeff, E)
=

g(t + 1, E)

g(t, E)
, (14)

with the value of the electric field, E , as input. This produces the effective energy as a
function of time, Eeff(t). Effective energy plots for the charged pion and kaon are shown in
Fig. 4. The effective energy should plateau over long times to the rest energy of the charged
particle. From the figure, however, we see that contributions from the first excited state
linger, and plateaus are not quite reached before the noise grows substantially. Nonetheless,
we clearly see behavior reminiscent of the neutral particle effective mass plots in Fig. 1. This
confirms that Eq. (9) properly describes the correlation function of a charged particle in an
electric field.

Finally in Fig. 5, we plot the electric field dependence of the extracted rest energies of
the charged pion and kaon. There is striking non-monotonic behavior which indicates the
presence of quartic and perhaps higher-order terms in the field strength. We can make a

6 Because the effective energy is deduced from the non-linear relation in Eq. (14), there is no guarantee

a solution exists. Ensembles for which no solution can be found at a given time are dropped from the

bootstrap. This only affected error bars the n = 4 effective energy plot for the π+, and only for t ≥ 24,

where on average 5 bootstraps were dropped.
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m(E) = m0 + αlatt
E E2 + ᾱlatt

EEEE4

π0 π+ K 0 K+

αlatt
E -2.6(5)(9) 18(4)(6) 1.5(4)(7) 8(3)(1)
ᾱlatt

E 1.8(5) 24(10) 0.6(5) 17(5)
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FIG. 2: Plots of correlated fits to the electric field dependence of neutral meson energies. For each

field strength, the bootstrap averaged energies are plotted with error bars reflecting the uncertainty

from statistics and fitting. Fits I and II to the E-dependence are also shown with the plotted bands

reflecting the uncertainty in the parameters appearing in Eq. (7).

From the extracted polarizabilities, we can investigate the electric field dependence of
meson energies. This is done in Fig. 2 for the neutral pion and neutral kaon. For the con-
nected part of the neutral pion, we see downward curvature of the energy with respect to
increasing E , while for the neutral kaon the energy is comparatively quite flat. In physical
units, the polarizabilities απ0

E , and αK0

E , are not consistent with näıve expectations. To at-
tempt a qualitative explanation for the size of the ground state polarizabilities, we compare
our results with predictions from chiral perturbation theory. The neutral pion electric polar-
izability at one-loop is negative [34, 35]. While this is surprising, the one-loop polarizability
arises solely from the disconnected contraction between quark basis ηu and ηd mesons [11].
Hence the negative sign owes to group theory weight of ηu versus ηd in the pion interpolating
field, π0 ∼ 1√

2
(ηu − ηd). As we have only calculated the connected part of the correlator,

chiral perturbation theory suggests that απ0

E is an order of magnitude smaller than the näıve
expectation. While our result is of this magnitude, it is of the wrong sign (the average of
ηu and ηd polarizabilities should be positive). This negative value could arise from volume
effects, which are known to be non-vanishing at next-to-leading order in chiral perturbation
theory [23]. For the neutral kaon polarizability, the one-loop chiral computation vanishes,
even with electrically neutral sea quarks [12]. Our extracted neutral kaon polarizability,
however, is smaller than typical two-loop contributions. Because the dominant volume cor-
rections arise from pion loops, we expect the neutral pion and kaon volume effects to be
of the same size. If the negative result for the connected π0 is due to volume corrections,
then the near vanishing result for the K0 could be due to a near cancelation between the
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is produced by considering the correlation function at successive times. The relativistic
propagator for a charged particle in Eq. (9) depends on the time, the electric field, and rest
energy, D = D

(
t, E(E), E

)
, albeit through a complicated one-dimensional integral. Given

numerical data for the correlation function, g(t, E), we can successively solve6 for the effective
energy in time by considering the ratio

D(t + 1, Eeff, E)

D(t, Eeff, E)
=

g(t + 1, E)

g(t, E)
, (14)

with the value of the electric field, E , as input. This produces the effective energy as a
function of time, Eeff(t). Effective energy plots for the charged pion and kaon are shown in
Fig. 4. The effective energy should plateau over long times to the rest energy of the charged
particle. From the figure, however, we see that contributions from the first excited state
linger, and plateaus are not quite reached before the noise grows substantially. Nonetheless,
we clearly see behavior reminiscent of the neutral particle effective mass plots in Fig. 1. This
confirms that Eq. (9) properly describes the correlation function of a charged particle in an
electric field.

Finally in Fig. 5, we plot the electric field dependence of the extracted rest energies of
the charged pion and kaon. There is striking non-monotonic behavior which indicates the
presence of quartic and perhaps higher-order terms in the field strength. We can make a

6 Because the effective energy is deduced from the non-linear relation in Eq. (14), there is no guarantee

a solution exists. Ensembles for which no solution can be found at a given time are dropped from the

bootstrap. This only affected error bars the n = 4 effective energy plot for the π+, and only for t ≥ 24,

where on average 5 bootstraps were dropped.

14

mπ ' 390 MeV π0 π+ K 0 K+

αE [10−4fm−3] -0.20(4)(7) 1.4(3)(5) 0.11(3)(5) 0.62(23)(08)

απ
±

E = 2.4± 0.5 Burgi (1996) and Gasser et. al. (2006)
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N αE [10−4fm−3] µ̃[µN ] µ[µN ]
neutron 3.1(7)(2) -1.63(6)(3) -1.63(6)(3)
proton 2.4(1.0)(0.1) 1.63(6)(3) 2.63(9)(3)

µV (mπ ' 390 MeV) = 4.3(2)(1)(1)[µN ] µ
phys
V = 4.7[µN ]

A. Walker-Loud emc



Motivation Background Electric Field Lattice Calculation Summary and Outlook

Future Prospects

In the last two years, we have established a program to compute
polarizabilites of hadrons, as well as magnetic moments of spin-1/2 baryons
utilizing background electric fields.

Several systematics we need to address
sea quark electric charges
As polarizabilites are singular in the chiral limit, they are also sensitive
to finite-volume effects

mπ[MeV]
L[fm] 450 390 300 225
2.5 © X ©
3.0 © X ©
4.0

⊗ ⊗ ⊗
Future:

utilize background magnetic fields
explore non-constant fields to extract nucleon spin-polarizabilites
explore methods to include sea-quark electromagnetic charges
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