Low-energy pion-photon reactions and chiral symmetry

N. Kaiser

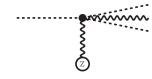
474.th Heraeus Seminar: From Methods to Structures. Bad Honnef. 14. Feb. 2011

- Tests of chiral perturbation theory via low-energy $\pi^- \gamma$ reactions
- COMPASS@CERN: Primakoff effect to extract $\pi^- \gamma$ cross sections
- Pion Compton scattering in ChPT: electric/magnetic polarizabilities
- Radiative corrections to $\pi^- \gamma \to \pi^- \gamma$, isospin-breaking correction
- Neutral and charged pion-pair production: $\pi^- \gamma \to \pi^- \pi^0 \pi^0$ or $\pi^+ \pi^- \pi^-$
- ullet Total cross sections and 2π invariant mass spectra at one-loop order
- Radiative corrections to $\pi^- \gamma \to \pi^- \pi^0 \pi^0$ (simpler case)

Publications: N. Kaiser, J. Friedrich, EPJA36, 181 ('08); NPA812, 186 ('08), N. Kaiser, NPA848, 198 ('10); EPJA46, 373 ('10); EPJA47 ('11) in print

Introduction: some ChPT highlights

- Pions $\pi^{\pm 0}$: Goldstone bosons of spontaneous chiral symmetry breaking in QCD, $SU(2)_L \times SU(2)_R \to SU(2)_V$
- Their low-energy dynamics: systematically (and accurately) calculable in <u>Chiral Perturbation Theory</u> (= loop-expansion with effective Lagrangian)
- 2-loop prediction for I=0 $\pi\pi$ -scattering length: $a_0m_\pi=0.220\pm0.005$ confirmed by NA48/2@CERN: $K^+\to\pi^+\pi^-e^+\nu_e$ ($\pi^+\pi^-$ mass distribut.)
- Implications: quark condensate $\langle 0|\bar{q}q|0\rangle$ is large, linear term dominates quark mass expansion of m_π^2 : $m_\pi^2 f_\pi^2 = -\langle 0|\bar{q}q|0\rangle m_q + \mathcal{O}(m_q^2 \ln m_q)$
- ullet DIRAC@CERN: Pionium lifetime $au_{pred} = (2.9 \pm 0.1) \cdot 10^{-15} \ {
 m sec}$


$$\Gamma((\pi^+\pi^-)_{atom} \to \pi^0\pi^0) = \frac{2}{9}\alpha^3 p_{cm} m_{\pi}^2 (a_0 - a_2)^2 + \dots$$

- Cusp effect in $2\pi^0$ mass spectrum of $K^+ \to \pi^+\pi^0\pi^0$ at $\pi^+\pi^-$ threshold (high statistics wins): $(a_0-a_2)m_\pi=0.257\pm0.006$ (0.265 \pm 0.005)_{ChPT} [include isospin-breaking correc.: J. Gasser, B. Kubis, A. Rusetsky et al.]
- <u>Electromagnetic</u> processes with pions allow for further tests of ChPT
- Pion polarizability difference (2-loops): $\alpha_{\pi} \beta_{\pi} = (5.7 \pm 1.0) \cdot 10^{-4} \, \text{fm}^3$, experimental determinations from Serpukhov and Mainz in conflict with it

Introduction: Primakoff effect

Primakoff effect:

• Scattering of high energy pions in nuclear Coulomb field (high Z) allows to extract cross sections for $\pi^-\gamma$ reactions (equivalent-photon method)

$$\frac{\text{d}\sigma}{\text{ds}\,\text{dQ}^2} = \frac{Z^2\alpha}{\pi(\text{s}-\textit{m}_\pi^2)} \frac{\text{Q}^2-\text{Q}_{\textit{min}}^2}{\text{Q}^4}\,\sigma_{\pi^-\gamma}(\text{s})\,, \qquad \text{Q}_{\textit{min}} = \frac{\text{s}-\textit{m}_\pi^2}{2E_{\textit{beam}}}$$

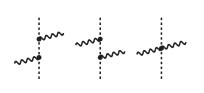
- $s = (\pi^- \gamma \text{ invariant mass})^2$, $Q \to 0$ momentum transfer by virtual photon
- expt. difficulty: isolate Coulomb peak from strong interaction background
- COMPASS@CERN: π -Compton scattering $\pi^-\gamma \to \pi^-\gamma$: electric and magnetic polarizabilities π^0 -production $\pi^-\gamma \to \pi^-\pi^0$: test QCD chiral anomaly, $F_{\gamma3\pi}=e/(4\pi^2f_\pi^3)$
- pion-pair product. $\pi^-\gamma \to 3\pi$: $\sqrt{s} > 1$ GeV meson spectroscopy, exotics, high statistics allows to continue event rates even down to threshold

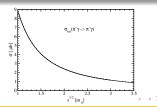
Pion Compton-scattering in ChPT

• Pion Compton-scattering: $\pi^-(p_1) + \gamma(k_1, \epsilon_1) \to \pi^-(p_2) + \gamma(k_2, \epsilon_2)$, T-matrix in center-of-mass frame in Coulomb gauge: $\epsilon_{1,2}^0 = 0$:

$$T_{\pi\gamma} = 8\pi\alpha \Big\{ -\vec{\epsilon}_1 \cdot \vec{\epsilon}_2 A(s,t) + \vec{\epsilon}_1 \cdot \vec{k}_2 \vec{\epsilon}_2 \cdot \vec{k}_1 \frac{2}{t} \Big[A(s,t) + B(s,t) \Big] \Big\}$$

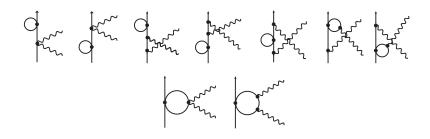
independent Mandelstam variables: $s = (p_1 + k_1)^2$, $t = (k_1 - k_2)^2$


Corresponding differential cross section:


$$\frac{d\sigma}{d\Omega_{cm}} = \frac{\alpha^2}{2s} \left\{ \left| A(s,t) \right|^2 + \left| A(s,t) + (1+z)B(s,t) \right|^2 \right\}$$

where $t = (s - m_{\pi}^2)^2 (z - 1)/2s$ with $z = \cos \theta_{cm}$, scattering angle

• Tree diagrams (s-channel pole diagram vanishes, $\epsilon_1 \cdot (2p_1 + k_1) = 0$):


$$A(s,t)^{(tree)} = 1,$$
 $B(s,t)^{(tree)} = \frac{s - m_{\pi}^2}{m_{\pi}^2 - s - t}$

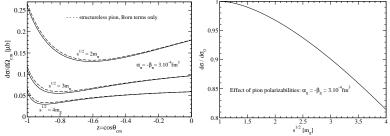
Pion Compton-scattering in ChPT

• Pion-loop diagrams (photon scattering off the pion's "pion cloud"):

$$A(s,t)^{(loop)} = rac{1}{(4\pi f_{\pi})^2} \left\{ -rac{t}{2} - 2m_{\pi}^2 \ln^2 rac{\sqrt{4m_{\pi}^2 - t} + \sqrt{-t}}{2m_{\pi}}
ight\} \sim t^2 > 0$$

with $f_\pi=92.4\,\mathrm{MeV}$, expression corresponds to isospin limit: $m_{\pi^0}=m_\pi$

ullet Electric/magnetic polarizabilities = low-energy const. with $lpha_\pi+eta_\pi=0$


$$A(s,t)^{(extit{pola})} = -rac{eta_{\pi} m_{\pi} t}{2lpha} < 0 \,, \qquad \quad lpha_{\pi} - eta_{\pi} = rac{lpha}{24\pi^2 f_{\pi}^2 m_{\pi}} (ar{\ell}_6 - ar{\ell}_5)$$

Pion Compton-scattering in ChPT

- Combination $\bar{\ell}_6 \bar{\ell}_5 = 3.0 \pm 0.3$ is determined via radiative pion decay $\pi^+ \to e^+ \nu_e \gamma$, PIBETA@PSI: axial-to-vector coupl. ratio $F_A/F_V \simeq 0.44$
- ullet Current-algebra relation: $\langle 0|A^\mu V^
 u|\pi
 angle\simeq f_\pi\langle\pi|V^\mu V^
 u|\pi
 angle$ plus corrections
- One-loop "prediction": $\alpha_{\pi} = -\beta_{\pi} \simeq 3.0 \cdot 10^{-4} \, \mathrm{fm}^3$
- ullet $\sigma_{tot}(s)$ absolutely insensitive to pion's low-energy structure
- ullet Small effect on <u>backward</u> angular distributions of $d\sigma/d\Omega_{cm}$

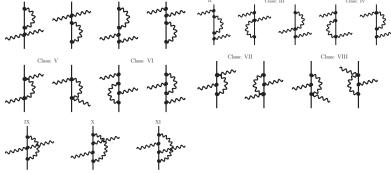
- Pion-loop compensates partly reduction of $d\sigma/d\Omega_{cm}$ by polarizabilities
- Effect of pion polarizabilities on π -Compton cross section: less than 20%
- M. Ivanov: 2-loop corrections to $d\sigma/d\Omega_{cm}$ are very small

Pion polarizabilities in ChPT

- Gasser et al., NPB745, 84 (2006): Pion polarizabilities to 2 loops
- Analytical expression in terms of low-energy constants $\bar{\ell}_i$:

$$\begin{array}{ll} \alpha_{\pi}-\beta_{\pi} & = & \frac{\alpha(\bar{\ell}_{6}-\bar{\ell}_{5})}{24\pi^{2}f_{\pi}^{2}m_{\pi}}+\frac{\alpha m_{\pi}}{(4\pi f_{\pi})^{4}}\Big\{c^{\prime}+\frac{8}{3}\Big(\bar{\ell}_{2}-\bar{\ell}_{1}+\bar{\ell}_{5}-\bar{\ell}_{6}+\frac{65}{12}\Big)\ln\frac{m_{\pi}}{m_{\rho}}\\ & & +\frac{4}{9}(\bar{\ell}_{1}+\bar{\ell}_{2})-\frac{\bar{\ell}_{3}}{3}+\frac{4\bar{\ell}_{4}}{3}(\bar{\ell}_{6}-\bar{\ell}_{5})-\frac{187}{81}+\Big(\frac{53\pi^{2}}{48}-\frac{41}{324}\Big)\Big\} \end{array}$$

- Contribution of nonfactorizable acnode diagram evaluated analytically (and corrected in comparison to Bürgi (1996)), improved values of $\bar{\ell}_i$
- 2-loop prediction including realistic estimate of theoretical errors:


$$lpha_\pi - eta_\pi = (5.7 \pm 1.0) \cdot 10^{-4} \, \text{fm}^3 \,, \qquad lpha_\pi + eta_\pi = (0.16 \pm 0.1) \cdot 10^{-4} \, \text{fm}^3$$

- Good reasons to believe that chiral prediction is stable against higher order corrections: ChPT at 2-loop order works very well for $\gamma\gamma \to \pi^0\pi^0$
- Existing expt. determinations $\alpha_{\pi} \beta_{\pi} = (15.6 \pm 7.8) \cdot 10^{-4} \, \text{fm}^3$ from Serpukhov (via Primakoff) and $\alpha_{\pi} - \beta_{\pi} = (11.6 \pm 3.4) \cdot 10^{-4} \, \mathrm{fm}^3$ from Mainz (via $\gamma p \rightarrow \gamma \pi^+ n$) <u>violate</u> chiral low-energy theorem by a factor 2!
- $\alpha_{\pi} + \beta_{\pi} = \frac{1}{2\pi^2} \int \frac{d\omega}{\omega^2} \sigma_{abs}^{\pi\gamma}(\omega)$ agrees with results from dispersion sum rules

Radiative corrections to pion Compton scattering

- Pion-structure effects small: necessary to include <u>radiative corr.</u> of $\mathcal{O}(\alpha)$
- Start with structureless pion: extensive exercise in one-loop scalar QED
- Advantage of Coulomb gauge: all s-channel pole diagrams vanish

 Dimensional regularization to treat both ultraviolet divergencies (d < 4) and infrared divergencies (d > 4), composite constant:

$$\xi = \frac{1}{d-4} + \frac{1}{2}(\gamma_E - \ln 4\pi) + \ln \frac{m_\pi}{\mu}$$

Alternative: introduce regulator photon mass m_{γ} , $\xi_{IR} = \ln(m_{\pi}/m_{\gamma})$

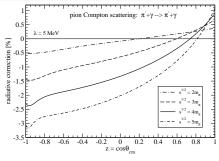
Radiative corrections to pion Compton scattering

- UV divergencies ξ_{UV} cancel: scalar QED is renormalizable, Crossing: A(s,u) and $(u-m_{\pi}^2)(s-m_{\pi}^2)^{-1}B(s,u)$ sym. under $s\leftrightarrow u$, $u=2m_{\pi}^2-s-t$
- Infrared-finite after inclusion of soft photon bremsstrahlung: $d\sigma/d\Omega_{\rm cm}\cdot\delta_{\rm soft}$

$$\delta_{\text{soft}} = \alpha \, \mu^{4-d} \int \frac{d^{d-1}I}{(2\pi)^{d-2} I_0} \left\{ \frac{2m_{\pi}^2 - t}{p_1 \cdot I p_2 \cdot I} - \frac{m_{\pi}^2}{(p_1 \cdot I)^2} - \frac{m_{\pi}^2}{(p_2 \cdot I)^2} \right\}$$

 Evaluate it in dim. regularization: ξ_{IR} from photon loops gets canceled, radiative correction depends on a small energy resolution scale λ:

$$\begin{split} \delta_{\text{real}} \; &= \; \frac{\alpha}{\pi} \Bigg\{ \Bigg[2 + \frac{4\hat{t} - 8}{\sqrt{\hat{t}^2 - 4\hat{t}}} \ln \frac{\sqrt{4 - \hat{t}} + \sqrt{-\hat{t}}}{2} \Bigg] \ln \frac{m_{\pi}}{2\lambda} + \frac{\hat{s} + 1}{\hat{s} - 1} \ln \hat{s} \\ &+ \int_{0}^{1/2} \!\! dx \, \frac{(\hat{s} + 1)(\hat{t} - 2)}{\sqrt{W} [1 - \hat{t}x(1 - x)]} \ln \frac{\hat{s} + 1 + \sqrt{W}}{\hat{s} + 1 - \sqrt{W}} \Bigg\} \end{split}$$


where
$$\hat{s} = s/m_{\pi}^2$$
, $\hat{t} = t/m_{\pi}^2$ and $W = (\hat{s} - 1)^2 + 4\hat{s}\hat{t}x(1 - x)$

- Terms beyond $\ln(m_{\pi}/2\lambda)$ specific for evaluation in center-of-mass frame
- Idealized experiment with undetected soft photons filling in momentum space a small sphere of radius λ in the center-of-mass frame
- \bullet Further experiment-specific soft/hard $\gamma\text{-radiation}$ can be accounted for

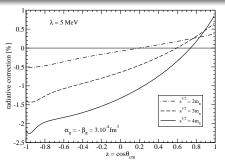
Radiative corrections to pion Compton scattering

Results:

- QED radiative corrections are maximal in backward directions $z \simeq -1$
- Same kinematical signature as pion polarizability difference $\alpha_{\pi} \beta_{\pi}$
- \bullet Suppressed by factor of ~ 10
- Limit of zero photon momentum $k_1=k_2=0$, pure Thomson amplitude $T_{\pi^-\gamma}^{(0)}=-8\pi\alpha\,\vec{\epsilon_1}\cdot\vec{\epsilon_2}$ survives, correspond. nonrenormalization factor:

$$\begin{split} 1 + \frac{\alpha}{4\pi} \Big[(4\xi_{IR} - 4\xi_{UV})^{(I)} + (8\xi_{UV} - 8)^{(V)} + (1 - 2\xi_{UV})^{(VII)} + (1 - 2\xi_{UV})^{(VIII)} \\ + (4 - 4\xi_{IR} - 2\xi_{UV})^{(IX)} + (\xi_{UV} + 1)^{(X)} + (\xi_{UV} + 1)^{(XI)} \Big] &= 1 \end{split}$$

N. Kaiser


Radiative corrections including pion structure

- Include leading pion-structure in form of polarizability difference $\alpha_\pi \beta_\pi$
- Reinterpret $\gamma\gamma$ contact vertex as representing the pion polarizabilities:

$$\sim F_{\mu\nu}F^{\mu\nu}$$
, $8\pi i\beta_{\pi}m_{\pi}\Big(k_1\cdot k_2\,\epsilon_1\cdot\epsilon_2-\epsilon_1\cdot k_2\,\epsilon_2\cdot k_1\Big)$

• Reference cross section: point-like $d\sigma^{(pt)}/d\Omega_{cm}$ + polarizability improved

$$\frac{d\sigma^{(\mathrm{pola})}}{d\Omega_{\mathrm{cm}}} = \frac{\alpha\beta_{\pi}m_{\pi}^{3}(s - m_{\pi}^{2})^{2}(1 - z)^{2}}{2s^{2}[s(1 + z) + m_{\pi}^{2}(1 - z)]}$$

• Relative size and angular depend. <u>not affected</u> by leading pion-structure

Isospin-breaking in pion Compton scattering

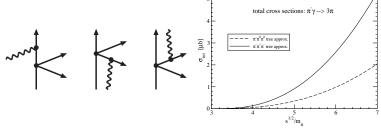
Isospin-breaking induced by charged/neutral pion mass difference (elm)

$$A(s,t)^{(isobr)} = \frac{m_{\pi}^2 - m_{\pi^0}^2}{(2\pi f_{\pi})^2} \left\{ -\frac{1}{2} - \frac{2m_{\pi}^2}{t} \ln^2 \frac{\sqrt{4m_{\pi}^2 - t} + \sqrt{-t}}{2m_{\pi}} \right\} \sim t$$

entirely from depend. of chiral $\pi\pi$ interaction on $m_{\pi^0}^2$, no elm counterterm

Small contribution to pion polarizability difference

$$\delta(\alpha_{\pi} - \beta_{\pi}) = \frac{\alpha(m_{\pi}^2 - m_{\pi^0}^2)}{24\pi^2 f_{\pi}^2 m_{\pi}^3} \simeq 1.3 \cdot 10^{-5} \,\text{fm}^3$$


- Affects backward cross section at level of few permille at most
- One order of magnitude smaller than "genuine" radiative corrections

Tree level cross sections for $\pi^- \gamma \to 3\pi$

- Coulomb gauge $\epsilon \cdot p_1 = \epsilon \cdot k = 0$, photon does not couple to incoming π^-
- parametrize $U = \sqrt{1 \vec{\pi}^2/f_{\pi}^2} + i\vec{\tau} \cdot \vec{\pi}/f_{\pi}$, no $\gamma 4\pi$ vertex at leading order

• Example: total cross section for $\pi^-(p_1) + \gamma(k, \epsilon) \to \pi^-\pi^0\pi^0$

N. Kaiser

$$\begin{split} \sigma_{tot}(s) &= \frac{\alpha}{32\pi^2 f_\pi^4 (s - m_\pi^2)^3} \int_{2m_\pi \sqrt{s}}^{s - 3m_\pi^2} dw \, \sqrt{\frac{s - w - 3m_\pi^2}{s - w + m_\pi^2}} \, (s - w)^2 \\ &\times \left[w \ln \frac{w + \sqrt{w^2 - 4m_\pi^2 s}}{2m_\pi \sqrt{s}} - \sqrt{w^2 - 4m_\pi^2 s} \right] \end{split}$$

- $(s-w)/f_{\pi}^2$ factor: chiral $\pi\pi$ -interaction, rest mainly 3-body phase space
- How large are next-to-leading order corrections from chiral loops + cts?

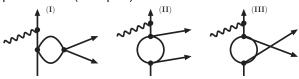
- 3-body process: $\pi^-(p_1) + \gamma(k, \epsilon) \to \pi^-(p_2) + \pi^0(q_1) + \pi^0(q_2)$
- general form of T-matrix (in Coulomb gauge)

$$T_{3\pi} = \frac{2e}{f_{\pi}^2} \Big[\vec{\epsilon} \cdot \vec{q}_1 A_1 + \vec{\epsilon} \cdot \vec{q}_2 A_2 \Big], \qquad A_2 = A_1 \big| (s_1 \leftrightarrow s_2, t_1 \leftrightarrow t_2)$$

ullet amplitudes A_1 and A_2 depend on five (independ.) Mandelstam variables:

$$s = (p_1 + k)^2$$
, $s_1 = (p_2 + q_1)^2$, $s_2 = (p_2 + q_2)^2$, $t_1 = (q_1 - k)^2$, $t_2 = (q_2 - k)^2$

- convenient for permutation of identical neutral pions $(s_1 \leftrightarrow s_2, t_1 \leftrightarrow t_2)$
- tree-level amplitudes:


$$A_1^{\text{(tree)}} = A_2^{\text{(tree)}} = \frac{2m_\pi^2 + s - s_1 - s_2}{3m_\pi^2 - s - t_1 - t_2}$$

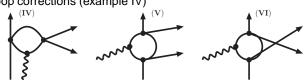
• written with physical parameters (f_{π}^2, m_{π}^2) instead of leading-order ones, requires extra renormalization contribution which accounts for difference

Pion-loop corrections (example I)

$$A_{1}^{(I)} = \frac{1}{(4\pi f_{\pi})^{2}} \frac{2m_{\pi}^{2} + s - s_{1} - s_{2}}{3m_{\pi}^{2} - s - t_{1} - t_{2}} \left\{ \left(\xi + \ln \frac{m_{\pi}}{\mu} \right) (s_{1} + s_{2} + t_{1} + t_{2} - 11m_{\pi}^{2}) + (s_{1} + s_{2} + t_{1} + t_{2} - 7m_{\pi}^{2}) \left[J(3m_{\pi}^{2} + s - s_{1} - s_{2}) - \frac{1}{2} \right] \right\}$$

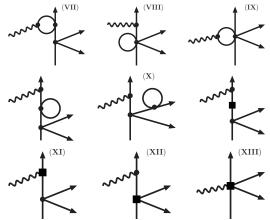
Ultraviolet divergence in dimensional regularization (ChPT convention)

$$\xi = \mu^{d-4} \left\{ \frac{1}{d-4} + \frac{1}{2} (\gamma_E - 1 - \ln 4\pi) \right\}$$


Loop function (from loop with two pion-propagators)

$$J(s) = \sqrt{\frac{s - 4m_{\pi}^2}{s}} \left[\ln \frac{\sqrt{|s - 4m_{\pi}^2|} + \sqrt{|s|}}{2m_{\pi}} - \frac{i\pi}{2} \theta(s - 4m_{\pi}^2) \right], \ s < 0 \text{ or } s > 4m_{\pi}^2$$

Pion-loop corrections (example IV)


$$A_{1}^{(IV)} = \frac{2m_{\pi}^{2} + s - s_{1} - s_{2}}{(4\pi f_{\pi})^{2}} \left\{ \xi + \ln \frac{m_{\pi}}{\mu} - \frac{1}{2} + J(3m_{\pi}^{2} + s - s_{1} - s_{2}) + \frac{m_{\pi}^{2} - s}{2m_{\pi}^{2} - t_{1} - t_{2}} + \frac{2(s - m_{\pi}^{2})}{(2m_{\pi}^{2} - t_{1} - t_{2})^{2}} \left\{ (s_{1} + s_{2} - s - m_{\pi}^{2} - t_{1} - t_{2}) \right. \\ \left. \times \left[J(m_{\pi}^{2} + s - s_{1} - s_{2} + t_{1} + t_{2}) - J(3m_{\pi}^{2} + s - s_{1} - s_{2}) \right] + 2m_{\pi}^{2} \left[G(m_{\pi}^{2} + s - s_{1} - s_{2} + t_{1} + t_{2}) - G(3m_{\pi}^{2} + s - s_{1} - s_{2}) \right] \right\} \right\}$$

Loop function (from loop with three pion-propagators)

$$G(s) = \left[\ln \frac{\sqrt{|s-4m_\pi^2|} + \sqrt{|s|}}{2m_\pi} - \frac{i\pi}{2} \theta(s-4m_\pi^2) \right]^2, \quad s < 0 \text{ or } s > 4m_\pi^2$$

Chiral loop and counterterm corrections (completed)

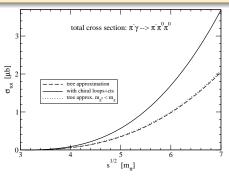
- Chiral 6π -vertex: challenging combinatorics involved, 6! = 720
- ullet Pion wavefunction renormalization factor, chiral counterterms $\sim \ell_1, \ell_2, \ell_4$
- ullet First crucial check: ultraviolet divergence ξ drops out in total sum for $A_{1,2}$

• Introduce low-energy constants that subsume chiral logarithm $\ln(m_\pi/\mu)$

$$\ell_j^r = \frac{\gamma_j}{32\pi^2} \left(\bar{\ell}_j + 2 \ln \frac{m_\pi}{\mu} \right), \quad \gamma_1 = \frac{1}{3}, \ \gamma_2 = \frac{2}{3}, \ \gamma_3 = -\frac{1}{2}, \ \gamma_4 = 2$$

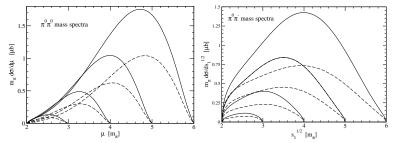
Complete counterterm contribution:

$$\begin{split} A_1^{(\mathrm{ct})} &= \frac{1}{(4\pi f_\pi)^2} \frac{1}{3m_\pi^2 - s - t_1 - t_2} \left\{ \frac{\bar{\ell}_1}{3} (s_1 + s_2 - s - m_\pi^2)^2 + \frac{\bar{\ell}_2}{3} \left[s^2 + s_1^2 + s_2^2 + t_2^2 - 2ss_1 + (s - 2s_1 + 2s_2 - t_1)t_2 + m_\pi^2 (s - 6s_2 + t_1 - 2t_2 + 6m_\pi^2) \right] \\ &- \frac{\bar{\ell}_3}{2} m_\pi^4 + 2\bar{\ell}_4 m_\pi^2 (s + 2m_\pi^2 - s_1 - s_2) \right\} \end{split}$$


- ullet Finite loop corrections with $\xi+\ln(m_\pi/\mu)$ terms deleted altogether
- Counterterms with low-energy constants $\ell_{5,6,7}$ do not contribute: ℓ_5 -term requires 2 external photons, $\langle r_\pi^2 \rangle = (\bar{\ell}_6 1)/(4\pi f_\pi)^2$ pion mean square charge radius, ℓ_7 -term breaks isospin symmetry
- Values of low-energy constants: $\bar{\ell}_1=-0.4\pm0.6, \ \bar{\ell}_2=4.3\pm0.1, \ \bar{\ell}_3=2.9\pm2.4, \ \bar{\ell}_4=4.4\pm0.2,$ determined with improved empirical input

• Total cross section for $\pi^- \gamma \to 3\pi$

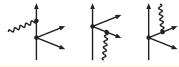
$$\sigma_{\text{tot}}(s) = \frac{\alpha}{32\pi^{3}f_{\pi}^{4}(s - m_{\pi}^{2})} \iint_{z^{2} < 1} d\omega_{1}d\omega_{2} \int_{-1}^{1} dx \int_{0}^{\pi} d\phi \left| \hat{k} \times (\vec{q}_{1}A_{1} + \vec{q}_{2}A_{2}) \right|^{2}$$



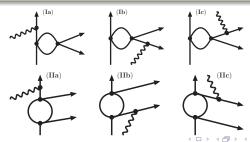
- enhancement of $\sigma_{tot}(s)$ by factor 1.5 1.8 through chiral corrections
- suggestive explanation: $\pi^+\pi^- \to \pi^0\pi^0$ final state interaction $(1+0.20)^2$

$$\frac{1}{3}(a_0-a_2) = \frac{3m_\pi}{32\pi f_\pi^2} \left[1 + \frac{m_\pi^2}{36\pi^2 f_\pi^2} \left(\bar{\ell}_1 + 2\bar{\ell}_2 - \frac{3\bar{\ell}_3}{8} + \frac{9\bar{\ell}_4}{2} + \frac{33}{8} \right) \right]$$

- Uncertainty induced by errorbars of $\bar{\ell}_j$: about $\pm 5\%$ for $\sigma_{\rm tot}(s)$, mainly $\bar{\ell}_1$
- More exclusive observables: two-pion mass spectra
- $\pi^0\pi^0$ invariant mass²: $\mu^2 = s s_1 s_2 + 3m_\pi^2$, $\pi^0\pi^-$ invariant mass²: s_1 , range of invariant masses: $2m_\pi < \mu$, $\sqrt{s_1} < \sqrt{s} m_\pi$

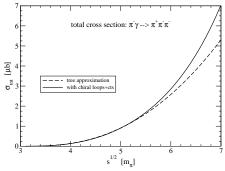


- Mass spectra reproduce enhancement by chiral correct. seen in $\sigma_{\text{tot}}(s)$
- No further specific dynamical details visible in two-pion mass spectra


Charged pion-pair production

- 3-body process: $\pi^-(p_1) + \gamma(k, \epsilon) \to \pi^+(p_2) + \pi^-(q_1) + \pi^-(q_2)$
- \bullet Photon couples to all charged pions: \to many more diagrams

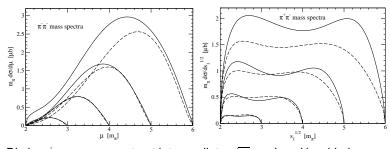
$$A_1^{\text{(tree)}} = \frac{s + m_{\pi}^2 - s_1 - s_2}{3m_{\pi}^2 - s - t_1 - t_2} + \frac{s - s_1 - s_2 + t_2}{t_1 - m_{\pi}^2} - 1$$


$$A_2^{\text{(tree)}} = \frac{s + m_{\pi}^2 - s_1 - s_2}{3m_{\pi}^2 - s - t_1 - t_2} + \frac{s - s_1 - s_2 + t_1}{t_2 - m_{\pi}^2} - 1$$

Charged pion-pair production

Total cross section

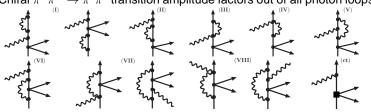
- $\sigma_{\rm tot}(s)$ for $\sqrt{s} < 6m_{\pi}$ almost unchanged in comparison to tree approx.
- suggestive explanation: $\pi^-\pi^- \to \pi^-\pi^-$ final state interaction $(1-0.02)^2$


$$a_2 = -\frac{m_\pi}{16\pi f_\pi^2} \left[1 - \frac{m_\pi^2}{12\pi^2 f_\pi^2} \left(\bar{\ell}_1 + 2\bar{\ell}_2 - \frac{3\bar{\ell}_3}{8} - \frac{3\bar{\ell}_4}{2} + \frac{3}{8} \right) \right]$$

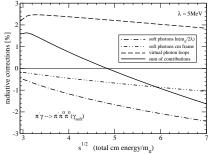
- Uncertainty induced by errorbars of $\bar{\ell}_i$: about $\pm 5\%$ for $\sigma_{tot}(s)$
- Preliminary analysis of COMPASS data seems to agree with tree approx.

Charged pion-pair production

• More exclusive observables: two-pion mass spectra



- Dip in $\pi^+\pi^-$ mass spectr. at intermediate $\sqrt{s_1}$ produced by chiral correc.
- Squared T-matrix $|\hat{k} \times (\vec{q}_1 A_1 + \vec{q}_2 A_2)|^2$ with its full dependence on pion energies and angles includes still more dynamical information
- It is expected that high statistics COMPASS data can reveal such details
- Role of $\rho(770)$ resonance ($\Gamma_{\rho} = 150 \, \text{MeV}$) needs to be investigated, ρ-exchange model should respect chiral symmetry and gauge invariance



Radiative corrections to neutral pion-pair production

• Chiral $\pi^+\pi^- \to \pi^0\pi^0$ transition amplitude factors out of all photon loops

• Radiative corr. to total cross section vary between about +2% and -2%

• Radiative corrections to $\pi^- \gamma \to \pi^+ \pi^- \pi^-$ could be much more sizeable, Coulomb singularity from γ -exchange between charged pions: $\alpha\pi/v_{\rm rel}$

