Few nucleon forces with explicit Delta fields

Hermann Krebs Ruhr-Universität-Bochum

February 14, 2010, Strong interactions, Bad Honnef

With V. Bernard, E. Epelbaum, U.-G. Meißner

Outline

- Nuclear forces in chiral EFT
- \checkmark Convergence of nuclear forces and the role of Δ -isobar
- N³LO three-nucleon forces with Δ -dof.
- Summary & Perspectives

Nucleon-Nucleon forces

Systematic perturbative description of few nucleon potentials

Nucleon-nucleon force up to N³LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98, '03; Kaiser '99-'01; Higa et al. '03; ...

+ 1/m and isospin-breaking corrections...

Neutron-proton phase shifts up to N³LO

Deuteron binding energy & asymptotic normalizations A_s and η_d

	NLO	$N^{2}LO$	$N^{3}LO$	Exp
$\begin{array}{c} E_{\rm d} \ [{\rm MeV}] \\ A_S \ [{\rm fm}^{-1/2}] \\ \eta_{\rm d} \end{array}$	$\begin{array}{c} -2.171\ldots -2.186\\ 0.868\ldots 0.873\\ 0.0256\ldots 0.0257\end{array}$	$\begin{array}{c} -2.189\ldots -2.202 \\ 0.874\ldots 0.879 \\ 0.0255\ldots 0.0256 \end{array}$	$\begin{array}{c} -2.216\ldots -2.223\\ 0.882\ldots 0.883\\ 0.0254\ldots 0.0255\end{array}$	$\begin{array}{r} -2.224575(9) \\ 0.8846(9) \\ 0.0256(4) \end{array}$

Entem & Machleidt '03; Epelbaum, Glöckle & Meißner '05

Delta-less effective potential

- Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{ MeV}$
- Small scale expansion: $Q \sim M_\pi \sim \Delta \ll \Lambda_\chi$ (Hemmert, Holstein & Kambor '98)

The subleading contribution is bigger than the leading one!

Expectation from inclusion of Δ explicitely more natural size of LECs
 better convergence
 applicability at higher energies

Few-nucleon forces with the Delta

Isospin-symmetric contributions

	Two-nucleon force		Three-nucleon force	
	riangle -less EFT	\triangle -contributions	∆–less EFT	∆ -contributions
LO	<u></u> +↓ ×			
NLO	부 석 척 ᄪ X	Image: Contract of the second secon		↓_↓↑
NNLO	•<1	↓< ↓< ↓	¥ -+-+ ₩	

NN potential with explicit Δ Epelbaum, H.K., Meißner, Eur. Phys. J. A32 (2007) 127

 $V_{\rm eff} = V_C + W_C \vec{\tau_1} \cdot \vec{\tau_2} + [V_S + W_S \vec{\tau_1} \cdot \vec{\tau_2}] \vec{\sigma_1} \cdot \vec{\sigma_2} + [V_T + W_T \vec{\tau_1} \cdot \vec{\tau_2}] (3 \vec{\sigma_1} \cdot \hat{r} \vec{\sigma_2} \cdot \hat{r} - \vec{\sigma_1} \cdot \vec{\sigma_2})$

$^{3}F_{3}$ partial waves up to NNLO with and without Δ

(calculated in the first Born approximation)

Δ-mass splitting in chiral EFT

Epelbaum, H.K., Meißner, Nucl. Phys. A806 (2008) 65 Tiburzi, Walker-Loud, Nucl. Phys. A 764 (2006) 274 (strong splitting)

11

$$\mathcal{L}_{\Delta,\text{mass}}^{\text{LO}} = -\bar{T}_{i}^{\mu} \begin{bmatrix} -\delta m_{\Delta}^{1} \frac{1}{2} \tau^{3} \delta_{ij} - \delta m_{\Delta}^{2} \frac{3}{4} \delta_{i3} \delta_{j3} \end{bmatrix} g_{\mu\nu} T_{j}^{\nu}.$$
Equidistant splitting: strong & em
$$\delta m_{\Delta}^{1} = -4M_{\pi}^{2} \epsilon c_{5}^{\Delta} - F_{\pi}^{2} e^{2} f_{2}^{\Delta}$$

$$\delta m_{\Delta}^{2} = -\frac{4}{3} F_{\pi}^{2} e^{2} f_{2}^{\Delta}$$

$$\delta m_{\Delta}^{2} = -\frac{4}{3} F_{\pi}^{2} e^{2} f_{2}^{\Delta}$$

Solution, PDG's recommended value for the average mass:

$$m_{\Delta} = rac{1}{4} \left(m_{\Delta^{++}} + m_{\Delta^{+}} + m_{\Delta^{0}} + m_{\Delta^{-}}
ight) = ilde{m}_{\Delta} + rac{1}{4} \delta m_{\Delta}^{2} = 1231 \dots 1233 \, \mathrm{MeV}$$

On the other hand: $m_{\Delta} = 1233.4 \pm 0.4 \text{ MeV}$ (Arndt et al. '06) use: $m_{\Delta} = 1233 \text{ MeV}$

$$\tilde{m}_{\Delta} = 1233.4 \pm 0.7 \text{ MeV}, \qquad \delta m_{\Delta}^1 = -5.3 \pm 2.0 \text{ MeV}, \qquad \delta m_{\Delta}^2 = -1.7 \pm 2.7 \text{ MeV}$$

Alternatively, use $m_{\Delta^{++}}/m_{\Delta^0}$ & the QM relation: $m_{\Delta^+} - m_{\Delta^0} = m_p - m_n$ (Rubinstein et al. '67) $\tilde{m}_{\Delta} = 1232.7 \pm 0.3 \text{ MeV}, \quad \delta m_{\Delta}^1 = -3.9 \text{ MeV}, \quad \delta m_{\Delta}^2 = 0.3 \pm 0.3 \text{ MeV}$

LO Isospin-breaking NN potential Epelbaum, H.K., Meißner, Phys. Rev. C77 (2008) 034006

2 π – exchange contributions with explicit $\Delta V = (\tau_1^3 + \tau_2^3) \left[V_C^{\text{III}} + V_S^{\text{III}} \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\text{III}} \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q} \right] + \dots$

- Similar $\sim \delta m$ contr. to $\tilde{V}_{\rm S,T}^{\rm III}$ in the Δ -less and Δ -full EFT
- Sizeable deviation in $\sim \delta m$ contr. for $\tilde{V}_{\rm C}^{\rm III}$
- Strong cancelations between $\sim \delta m$ and $\sim \delta m^1_{\Delta}$ terms

Big contributions beyond the subleading corrections in the Δ -less EFT

NLO Isospin-breaking NN potential

Epelbaum, H.K., Meißner: forthcoming

NLO diagram classes for 2π – exchange with explicit Δ

For the following numerical considerations we set 3 unknown LECs to zero

NLO Isospin-breaking NN potential

Charge Symmetry Breaking (CSB) 2π –exchange potential $V = (\tau_1^3 + \tau_2^3) \left[V_C^{\text{III}} + V_S^{\text{III}} \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\text{III}} \vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q} \right] + \dots$ LO (Δ -full EFT) LO+NLO (Δ -full EFT) 400 Individual contributions to δm $\widetilde{V}_{C}^{III}\left(r\right)$ [keV] δm¹ CSB force in Δ -full EFT 200 total 0 Strong cancelations between -200 $\sim \delta m$ and $\sim \delta m^1_{\Lambda}$ terms both at LO and NLO 80 $\widetilde{V}_{T}^{III}\left(r\right)$ [keV] 40 In all CSB forces $\sim \delta m$ terms are by almost factor 2 larger than $\sim \delta m_{\Delta}^1$ terms -40 $\widetilde{V}_{S}^{III}\left(r\right)$ [keV] NLO corrections appear to be of natural size -40 -80 1.2 1.6 1.8 1.4 2 1.2 1.4 1.6 1.8 2 1 1

r [fm]

r [fm]

NLO Isospin-breaking NN potential

Charge Symmetry Breaking (CSB) 2π -exchange potential

Three-nucleon forces

Three-nucleon forces in chiral EFT start to contribute at NNLO

U. van Kolck '94; Epelbaum et al. '02; Nogga et al. '05; Navratil et al. '07

$$\begin{array}{c|c}
\\
E \\
E \\
D \\
C_{1,3,4}
\end{array}$$

Three-nucleon forces at N³LO

Long range contributions

 $c_{1,3,4}$ from the fit to πN -scattering data

D, E from ${}^{3}H, {}^{4}He, {}^{10}B$ binding energy + coherent nd scattering length

Bernard, Epelbaum, H.K., Meißner '08; Ishikawa, Robilotta '07

- No additional free parameters
- $\, \, {}_{m{\mathfrak{o}}} \,$ Expressed in terms of g_A, F_π, M_π
- Rich isospin-spin-orbit structure

Large $\rightarrow c_i \sim <$

• $\Delta(1232)$ -contr. are important

 N^4 LO-contr.

Kaiser '00/'01, see also Machleidt, Entem '10

Shorter range contributions

Bernard, Epelbaum, H.K., Meißner : forthcoming

- LECs needed for shorter range contr. g_A, F_π, M_π, C_T
- Central NN contact interaction ~ C_S does not contribute (note $C_S \gg C_T$)
- Smaller N³LO shorter range contr. expected (approx. Wigner sym.)

Relativistic 1/m corrections

Delta excitations and the three-nucleon force

Epelbaum, H.K., Meißner, Nucl. Phys. A806 (2008) 65

→ The LO NNN∆ contact interaction $\overline{T}_i^{\mu}N\overline{N}S_{\mu}\tau^iN$ + h.c. vanishes due to the Pauli principle the LECs *D* and *E* are not saturated by the delta.

■ No contributions from subleading 2π –exchange due to ∂^0 at the $b_3 + b_8$ vertex.

. The entire effect of the Δ is given by a partial shift of the N²LO TPE 3NF to NLO...

Computational strategy

d-dim one loop tensor integrals by Passarino-Veltman reduction

$$\int \frac{d^d l}{(2\pi)^d} \frac{l_{\mu_1} \dots l_{\mu_n}}{[l^2 - M^2][(l+p)^2 - M^2]} = T^{(1)}_{\mu_1 \dots \mu_n}(p) f_1(p^2) \int \frac{d^d l}{(2\pi)^d} \frac{1}{[l^2 - M^2][(l+p)^2 - M^2]} + T^{(2)}_{\mu_1 \dots \mu_n}(p) f_2(p^2) \int \frac{d^d l}{(2\pi)^d} \frac{1}{[l^2 - M^2]}$$
Tensors in p

 $f_1(p^2)$ and $f_2(p^2)$ include in general non-physical singularities which cancel in final result

Dimensional-shift reduction Davydychev '91
$$\int \frac{d^{d}l}{(2\pi)^{d}} \frac{l_{\mu_{1}} \dots l_{\mu_{n}}}{[l^{2} - M^{2}][(l+p)^{2} - M^{2}]} = \sum_{ij} T_{\mu_{1} \dots \mu_{n}}^{(i)}(p) \int \frac{d^{d+2i}l}{(2\pi)^{d+2i}} \frac{c_{ij}}{[l^{2} - M^{2}]^{n_{ij}}[(l+p)^{2} - M^{2}]^{m_{ij}}}$$

Partial integration techniques provide recursion relations

 $\int \frac{d^d l}{(2\pi)^d} \frac{\partial}{\partial l_{\mu}} f(l) = 0$ Connection betw. Dimensional-shift and Passarino-Veltman red.

Implement Heavy-Baryon extension of these techniques in Mathematica/FORM

N³LO potential with explicit Δ

• N³LO two-nucleon force with explicit Δ - dof. not yet available (part of ERC project)

N³LO three-nucleon force with explicit Δ - dof. (long range part)

 \bigcirc Replace inner nucleon lines by Δ - lines in all possible ways

Additional Δ - scale makes 3-dim. calculations inconvenient

Is it possible to give a 4-dim. representation for N³LO three-nucleon force ?

✓ Irreducible diagrams are naturally described as 4-dim Heavy Baryon loops $\frac{1}{l_0 + i\epsilon} \longrightarrow \text{Inclusion of } \Delta \longrightarrow \frac{1}{l_0 - \Delta + i\epsilon}$

4-dim. matching of reducible diagrams

Topology classes where 4-dim. matching is possible for all diagrams

Additional integration

Unitary transformations

Topology classes where not all diagrams do match to 4-dim. loop structures

$$\frac{1}{q_3^2 + M^2} \int \frac{dz}{2\pi} \frac{d^d l}{(2\pi)^d} \frac{1}{l^2 - M^2} \frac{1}{(l - q_1 - zv)^2 - M^2} \frac{1}{l_0 - \Delta} \frac{1}{z + i\epsilon}$$
 Sample matched integral

New master integrals given by elliptic integrals

New master integrals do not appear in the final result but cancel after all contributions have been summed up

Illinois vs Chiral Ring Diagrams (Preliminary)

Illinois ring diagrams contr. with Δ -dof (*Pieper et al. PRC64* (2002) 014001)

N³LO Chiral Ring Diagrams (Preliminary)

Dominant nucleon contributions to N³LO ring diagrams

Dominant N³LO ring diagram contributions (Preliminary)

Dominant contribution of ring diagrams with Δ - dof. at $r_{12}=r_{13}=r_{23}=1.5~{
m fm}$

$$S_{\tau}^{I} = 2 + \frac{2}{3}(\tau_{1} \cdot \tau_{2} + \tau_{1} \cdot \tau_{3} + \tau_{2} \cdot \tau_{3}), \ S_{\tau,312}^{D} = \frac{2}{3}\tau_{1} \cdot \tau_{2}, A_{\tau}^{I} = \frac{i}{3}\tau_{1} \cdot (\tau_{2} \times \tau_{3})$$

$$S_{\sigma}^{1} = \vec{\sigma}_{2} \cdot (\hat{r}_{12} \times \hat{r}_{23}) \vec{\sigma}_{3} \cdot (\hat{r}_{13} \times \hat{r}_{23}), \ S_{\sigma}^{2} = i \vec{\sigma}_{1} \cdot (\hat{r}_{12} \times \hat{r}_{13}) \vec{\sigma}_{2} \cdot (\hat{r}_{12} \times \hat{r}_{23}) \vec{\sigma}_{3} \cdot (\hat{r}_{13} \times \hat{r}_{23}) \vec{\sigma}_{3} \cdot (\hat{r}_{13} \times \hat{r}_{23})$$

	1	S^1_{σ}	S_{σ}^2	S_{σ}^3
$S^I_{ au}$	$-1.559 { m MeV}$	$2.004 { m MeV}$	0	0
$S^D_{ au,312}$	$0.271 { m MeV}$	$-0.472 { m MeV}$	$-0.037~{\rm MeV}$	0
$A^I_{ au}$	0	0	$-1.219 { m MeV}$	$1.045 { m MeV}$

Important to make a partial wave analysis

Find a phase-space point in 3N continuum which is most sensitive to large N³LO contr.

Planed pd-break up experiment at COSY with proton beam energy betw. 30 and 50 MeV by PAX Collaboration

- Few-nucleon forces within chiral EFT are analyzed upto N³LO
- Setter convergence of nuclear forces if Δ -isobar is included explicitly
- Sizeable contributions from N³LO three nucleon forces with explicit Δ -isobar

Perspectives

- Partial wave analysis of N³LO three body forces
- Complete numerical studies with 3NF and 4NF upto N³LO
- Electroweak reactions with few-nucleon systems

Results of the fit

- Improved description of P-wave parameters when Δ is included
- Strongly reduced values for c_i
- Resulting c_i depend strongly on h_A while the thresh. param. do not

S- and P-wave threshold parameters

	Q^2 , no Δ	Q^2 fits 1, 2	EM98
a_{0+}^+	0.41	0.41	0.41 ± 0.09
b_{0+}^+	-4.46	-4.46	-4.46
a_{0+}^{-}	7.74	7.74	7.73 ± 0.06
b_{0+}^{-}	3.34	3.34	1.56
a_{1-}^{-}	-0.05	-1.32	-1.19 ± 0.08
a_{1-}^+	-2.81	-5.30	-5.46 ± 0.10
a_{1+}^{-}	-6.22	-8.45	-8.22 ± 0.07
a_{1+}^+	9.68	12.92	13.13 ± 0.13

Nd elastic scattering

Deuteron break-up

- Promising NNLO results for Nd elastic scattering
- Satisfactory A, description related to overprediction of triplet P-waves
- Systematic overestimation of deuteron break-up data
- Hope for improvement at N³LO