Reconciling J/ψ production at HERA, RHIC, Tevatron and LHC with NRQCD factorization at next-to-leading order

Bernd Kniehl

II. Institut für Theoretische Physik Universität Hamburg

474th International Wilhelm und Else Heraeus Seminar Strong interactions: From methods to structures Bad Honnef, 12–16 February 2011

In collaboration with Mathias Butenschön Phys. Rev. Lett. **104** (2010) 072001 Phys. Rev. Lett. **106** (2011) 022003

Production and Decay Rates of Heavy Quarkonia

Heavy quarkonia: Bound states of heavy quark and its antiquark.

- Charmonia ($c\overline{c}$) and Bottomonia ($b\overline{b}$)
- Top decays too fast for bound state

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color-singlet (= color neutral) state. In case of J/ψ: cc̄[³S₁^[1]]
- Multiply by quarkonium wave function (or its derivative) at origin
- Strong disagreement with Tevatron data

Nonrelativistic QCD (NRQCD):

- 1995: Rigorous effective field theory by Bodwin, Braaten, Lepage
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv ≪ Λ_{QCD} ≪ M)
- Could explain hadroproduction at Tevatron

Results

Summary 00

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- n: Every possible Fock state, including color-octet states.
- $\sigma_{c\overline{c}[n]}$: Production rate of $c\overline{c}[n]$, calculated in perturbative QCD.
- ⟨O^{J/ψ}[n]⟩: Long distance matrix elements (LDMEs): describe cc[n] → J/ψ, universal, extracted from experiment.

Scaling rules: MEs scale with relative velocity v ($v^2 \approx 0.2$):

• Double expansion in v and α_s .

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals color-singlet model.

Production of J/ψ : NRQCD vs. Experiment (History)

Hadroproduction at Tevatron:

Photoproduction at HERA:

This work: NLO NRQCD calculation for photo- and hadroproduction \implies Aim: Establish universality of long distance matrix elements.

Introduction	Divergences	Results	Summary
00000	000	0000000000000	00

Production of J/ψ : Summary of Calculations

Hadroproduction:

	³ S ₁ ^[1]	${}^{1}S_{0}^{[8]},{}^{3}S_{1}^{[8]},{}^{3}P_{0/1/2}^{[8]}$
Born	Baier, Rückl (1980)	Cacciari, Krämer (1996)
NLO	Campbell et al. (2007)	Butenschön, BK (2010)
		Ma et al. (2010)

Photoproduction:

	³ S ₁ ^[1]	${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}$
Born	Berger, Jones (1981)	Ko, Lee, Song (1996)
NLO	Krämer (1995)	Butenschön, BK (2009)

Open question of ME universality:

- NLO NRQCD calculation: after 14 years!
- Difficulty: virtual corrections to *P* states

Introduction

Divergence

Results

Summary 00

Direct J/ψ Production

Factorization formulas: (e.g. photoproduction)

 Convolute partonic cross sections with proton PDFs:

$$\sigma_{ ext{hadr}} = \sum_{i} \int dx \; f_{i/p}(x) \cdot \sigma_{ ext{part,i}}$$

• NRQCD factorization:

$$\sigma_{\scriptscriptstyle \mathsf{part},i} = \sum_n \sigma(\gamma i
ightarrow c\overline{c}[n] + X) \cdot \langle \mathsf{O}^{J/\psi}[n]
angle$$

Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

$$\begin{aligned} &A_{c\overline{c}[^{3}\mathsf{S}_{1}^{[1/8]}]} = \varepsilon_{\alpha} \operatorname{Tr}\left[\mathsf{C}\,\Pi^{\alpha}\,A_{c\overline{c}}\right]|_{q=0} \\ &A_{c\overline{c}[^{3}\mathsf{P}_{l}^{[8]}]} = \varepsilon_{\alpha\beta}\,\frac{d}{dq_{\beta}}\operatorname{Tr}\left[\mathsf{C}\,\Pi^{\alpha}\,A_{c\overline{c}}\right]|_{q=0} \end{aligned}$$

- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- q: Relative momentum between c and \overline{c} .

Introduction	Divergences	Results 000000000000000000000000000000000000	Summary 00
<u> </u>			

Overview of IR Singularity Structure

In	tro	bc	u	cti	0	n
0		0		0		

Results

Structure of Soft Singularities

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$\begin{split} & A_{\text{soft,s}} = A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0) \\ & A_{\text{soft,p}} = A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0) \\ & |A_{\text{soft,s}}|^2 = |A_{\text{Born,s}}|^2 \cdot E(0)^2 \\ & |A_{\text{soft,p}}|^2 = |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A^*_{\text{Born,s}} A_{\text{Born,p}} \cdot E(0) E'(0) \\ & + |A_{\text{Born,s}}|^2 \cdot E'(0)^2 \end{split}$$

Introduction	Divergences	Results	Summary
00000	000	0000000000000	00

Radiative Corrections to Long Distance MEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

 $\begin{array}{l} \textbf{O}[n] = \textbf{4-fermion operators} \\ (n = {}^{3}\textbf{S}_{1}^{[1]}, {}^{1}\textbf{S}_{0}^{[8]}, {}^{3}\textbf{S}_{1}^{[8]}, {}^{3}\textbf{\mathcal{P}}_{0/1/2}^{[8]}, \ldots) \end{array}$

Corrections to $\langle O^{J/\psi}[{}^3S_1^{[1/8]}] \rangle$ with NRQCD Feynman rules:

UV singularity cancelled by renormalization of 4-fermion operat.

• IR singularity cancels soft #3 terms of *P* states.

Introduction

Divergences

 Summary

Combined Fit to Tevatron and HERA (1)

Fit CO LDMEs to p_T distributions from Tevatron II and HERA II:

• Best fit values: $\langle \mathcal{O}({}^{1}S_{0}^{[8]}) \rangle = (0.0450 \pm 0.0072) \text{ GeV}^{3},$ $\langle \mathcal{O}({}^{3}S_{1}^{[8]}) \rangle = (0.00312 \pm 0.00093) \text{ GeV}^{3}, \langle \mathcal{O}({}^{3}P_{0}^{[8]}) \rangle = -(0.0121 \pm 0.0035) \text{ GeV}^{5}$ • $\propto v^{4} \langle O_{1}({}^{3}S_{1}) \rangle \rightsquigarrow \text{NRQCD velocity scaling rules } \sqrt{$

Intro	odu	cti	on
00	oc	0	

Results

Summary 00

Combined Fit to Tevatron and HERA (2)

NLO CSM predictions significantly undershoot the data

Intr	odu	otic	n
mu	ouu		
~ ~			
OC		0	

Results

Summary

Combined Fit to Tevatron and HERA (3)

Contribution of individual states:

- Hadroprod.: Short-distance $\sigma(c\overline{c}[{}^{3}P_{J}^{[8]}])$ negative for $p_{T} \gtrsim 7 \text{ GeV}$
- But: Short-distance cross sections and LDMEs unphysical (NRQCD scale and scheme dependence) ⇒ No problem!

Results

Further Predictions for HERA

- Proton rest frame: z = fraction of photon energy going to J/ψ .
- $z \lesssim 0.45$: Resolved photoproduction important (not yet included).
- W distribution also well described. Data not part of the fit.

Results

Summary 00

Predictions for RHIC

Use LDMEs to make prediction for RHIC:

- Also RHIC data well described by CS+CO.
- Like at Tevatron: CS orders of magnitudes below the data.
- These data not part of the fit, outcome not trivial.

Results

Summary 00

Predictions for LHC

- Also CMS data well described by CS+CO.
- Like at Tevatron: CS orders of magnitudes below the data.
- These data not part of the fit, outcome not trivial.

Results

Predictions for LHC (2)

Use LDMEs to make predictions for ATLAS:

- Also ATLAS data well described by CS+CO.
- Like at Tevatron: CS orders of magnitudes below the data.
- These data not part of the fit, outcome not trivial.

Results

Predictions for LHC (3)

Use LDMEs to make predictions for ATLAS and LHCb:

- Also ATLAS and LHCb data well described by CS+CO.
- Like at Tevatron: CS orders of magnitudes below the data.
- These data not part of the fit, outcome not trivial.

Introduction	Divergences	Results	Summary
00000	000	0000000000000	00

Comparison with Ma, Wang, Chao arXiv:1009.3655

Fit only to Tevatron data with $p_T > 7$ GeV, including feed-down

• Observe that $d\hat{\sigma}({}^{3}P_{J}^{[8]}) \approx r_{0}d\hat{\sigma}({}^{1}S_{0}^{[8]}) + r_{1}d\hat{\sigma}({}^{3}S_{1}^{[8]})$ with $r_{0} = 3.9$ and $r_{1} = -0.56$

- Define $M_0 = \langle \mathcal{O}({}^1S_0^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}({}^3\mathcal{P}_0^{[8]}) \text{ and } M_1 = \langle \mathcal{O}({}^3S_1^{[8]}) \rangle + \frac{r_1}{m_c^2} \langle \mathcal{O}({}^3\mathcal{P}_0^{[8]}) \rangle$
- Substitute $\langle \mathscr{O}({}^{1}S_{0}^{[8]}) \rangle \to M_{0}$ and $\langle \mathscr{O}({}^{3}S_{1}^{[8]}) \rangle \to M_{1}$ and discard $d\hat{\sigma}({}^{3}P_{J}^{[8]})$.
- Fit yields $M_0 = (7.4 \pm 1.9) \times 10^{-2}$ GeV³ and $M_1 = (0.05 \pm 0.02) \times 10^{-2}$ GeV³ with χ^2 /d.o.f. = 0.33

• Cf. $M_0 = (2.47 \pm 0.93) \times 10^{-2} \text{ GeV}^3$ and $M_1 = (0.59 \pm 0.13) \times 10^{-2} \text{ GeV}^3$ from BK

Results

Summary 00

Significance of HERA data

Fit only to Tevatron data with $p_T > 3$ GeV, excluding feed-down

CO MEs too large in magnitude ~> NRQCD velocity scaling rules violated

Substantial fine tuning ~> unnatural

Introduction 00000 Divergences

Results

Summary

Significance of p_T cut on Tevatron data

Fit to Tevatron $p_T > 7$ GeV and HERA data, excluding feed-down

• Thanks to stabilizing influence of HERA data

Results

Significance of feed-down

Fit to HERA and Tevatron data w/ feed-down subtracted

• feed-down/prompt $\approx (32 - 0.62 \frac{p_T}{\text{GeV}})\%$ from Tevatron I, $\approx 15\%$ at HERA from MC

	10 ⁻² GeV ^{3+2L}	BK default	feed-down subtracted
•	$\langle \mathscr{O}({}^{1}S_{0}^{[8]}) \rangle$	4.50 ± 0.72	3.1
	$\langle \mathscr{O}({}^3S_1^{[8]}) \rangle$	0.312 ± 0.093	0.23
	$\langle \mathscr{O}({}^{3}\!P_{0}^{[8]}) angle$	-1.21 ± 0.35	-0.82

• Feed-down corrections « theoretical uncertainties

Comparison with MWC arXiv:1009.3655 (2)

Summary of M_0 and M_1 in (10⁻² GeV³) from BK and MWC

authors	data	feed-down	M_0	M_1
BK	default	_	2.5	0.59
BK	HERA $p_T > \sqrt{5}$ GeV	—	2.5	0.60
BK	Tevatron $p_T > 7 \text{ GeV}$	—	1.9	0.54
BK	default		1.7	0.43
BK	only Tevatron	<u> </u>	8.7	0.62
BK	only Tevatron $p_T > 7$ GeV	—	9.3	0.30
MWC	only Tevatron $p_T > 5 \text{ GeV}$	\checkmark	5.2	0.16
MWC	only Tevatron $p_T > 7$ GeV	\checkmark	7.4	0.05

Lower p_T cuts on HERA or Tevatron data marginal in joint fit

Feed-fown corrections moderate ~> no qualitative change

● Exclusion of HERA data ~→ fit greatly underconstrained

Comparison with MWC arXiv:1009.3655 (3)

Errors on M_0 and M_1 in 3-parameter fit to only Tevatron $p_T > 7$ GeV

Covariance matrix V_{ij} defined through

$$(V^{-1})_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial x_i \partial x_j}, \qquad (x_1, x_2, x_3) = (\langle \mathcal{O}(^1 S_0^{[8]}) \rangle, \langle \mathcal{O}(^3 S_1^{[8]}) \rangle, \langle \mathcal{O}(^3 \mathcal{P}_0^{[8]}) \rangle)$$

 $\begin{array}{ll} \lambda_1 = 0.127; & \vec{\nu}_1 = (0.864, -0.114, -0.491) \\ \lambda_2 = 1.78 \times 10^{-6}; & \vec{\nu}_2 = (0.502, 0.0968, 0.860) \\ \lambda_3 = 4.69 \times 10^{-8}; & \vec{\nu}_3 = (0.0507, 0.989, -0.141) \end{array}$

Cf. $\vec{v}_{M_0} = (0.500, 0, 0.866)$ and $\vec{v}_{M_1} = (0, 0.970, -0.242)$ from 2-parameter fit of MWC $\Delta M_0 = (\vec{v}_{M_0}^T V \vec{v}_{M_0})^{1/2} / (\vec{v}_{M_0})_1 = 0.95 \times 10^{-2}$ $\Delta M_1 = (\vec{v}_{M_1}^T V \vec{v}_{M_1})^{1/2} / (\vec{v}_{M_1})_2 = 0.29 \times 10^{-2}$ I.e. 3-parameter fit yields: $M_0 = (9.3 \pm 0.95)$ and $M_1 = (0.30 \pm 0.29)$ in 10^{-2} GeV³ \rightarrow almost 100% error on M_1 in 3-parameter fit Cf. $M_0 = (7.4 \pm 1.9)$ and $M_1 = (0.05 \pm 0.02)$ from 2-parameter fit by MWC

- M_1 corresponds mostly to \vec{v}_3 , but contains small admixtures of \vec{v}_1 and \vec{v}_2
- \vec{v}_1 very badly constrained \rightsquigarrow large error on M_1
- Not exhibited in 2-parameter fit, where variations orthogonal to M₀ and M₁ are forbidden

Results

Comparison with MWC arXiv:1009.3655 (4)

Errors on $\langle \mathscr{O}({}^{1}S_{0}^{[8]})\rangle$, $\langle \mathscr{O}({}^{3}S_{1}^{[8]})\rangle$ and $\langle \mathscr{O}({}^{3}P_{0}^{[8]})\rangle$ in 3-parameter fits

10 ⁻² GeV ^{3+2L}	BK default	Tevatron $p_T > 7$ GeV only
$\langle \mathscr{O}({}^{1}S_{0}^{[8]}) \rangle$	4.50 ± 0.72	25.1 ± 30.7
$\langle \mathscr{O}({}^3S_1^{[8]}) \rangle$	0.312 ± 0.093	-1.96 ± 4.07
$\langle \mathscr{O}({}^{3}P_{0}^{[8]})\rangle$	-1.21 ± 0.35	-9.09 ± 17.48

Correlation matrix V_{ij} of default fit has eigenvalues and eigenvectors:

 $\lambda_1 = 6.39 \times 10^{-5}$: $\vec{v}_1 = (0.893, -0.111, -0.435)$ $\lambda_2 = 1.92 \times 10^{-7}$: $\vec{v}_2 = (0.440, 0.0193, 0.898)$

- $\lambda_3 = 4.00 \times 10^{-8}$: $\vec{v}_3 = 0.0910, 0.994, -0.0659$
- No such strong hierarchy among eigenvalues

Fit results meaningful

Introduction	Divergences	Results	Summary
00000	000	0000000000000	•0
Summary (1)			

Our project: Test NRQCD

- NRQCD provides rigorous factorization theorem for production and decay of heavy quarkonia: Include color-octet (CO) states.
- But: Need to proof universality of CO LDMEs.
- This work: Technological breakthrough: After 14 years finally NLO NRQCD photo- and hadroproduction calculation.

Our Results:

- CSM predictions: Could verify all previous results: CS contributions far below data in all considered experiments.
- Fitted CO LDMEs to p_T distributions at Tevatron and HERA.
- Used LDMEs for RHIC, LHC and HERA W and z distributions \implies CS+CO: Good agreement with data.

Introduction	Divergences	Results	Summary
00000	000	0000000000000	00
Summary (2)		
ourninally (2	- /		

Discussion of Fit:

- NLO hadroproduction *P* states: Shape changes, even negative.
 ⇒ Fit all three CO LDMEs (not linear combination like at LO).
- Negative unphysical quantities no problem.
- Photo- and hadroproduction consistently described by NRQCD.

Still to be done:

- Include resolved photoproduction.
- Extend analysis to e^+e^- collisions (LEP, *B* factories).
- Include feed-down processes.
- Do polarization analysis.