Electric properties of halo nuclei using EFT

Daniel Phillips

Ohio University
Work done in collaboration with H.-W. Hammer
arXiv:1001.1511 and "in preparation" see also Rupak \& Higa arXiv:1101.0207

OHIO
UNIVERSITY
Research supported by the US Department of Energy and the Deutsche Forschungsgemeinschaft

Outline

Outline

- Generalities: halo nuclei, experimental techniques
- Example 1: Halo EFT for Carbon-19
- Dissociation

Outline

- Generalities: halo nuclei, experimental techniques
- Example 1: Halo EFT for Carbon-19

Shallow S-wave state

- Dissociation

Outline

- Generalities: halo nuclei, experimental techniques
- Example 1: Halo EFT for Carbon-19

Shallow S-wave state

- Dissociation
- Example 2: Halo EFT for Beryllium-11
- Form factors
- E1 transition from s-state to p-state
- Dissociation
- Conclusion

Outline

- Generalities: halo nuclei, experimental techniques
- Example 1: Halo EFT for Carbon-19

> Shallow S-wave state

- Dissociation
- Example 2: Halo EFT for Beryllium-11
- Form factors

Shallow S-wave state Shallow P-wave state

- E1 transition from s-state to p-state
- Dissociation
- Conclusion

Halo nuclei

Halo nuclei

- Here I define a halo nucleus as one in which the last nucleon (or nucleons) have $\mathrm{a}\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}$ that is markedly larger than the range, R , of the interaction it has with the rest of the nucleus-the core.

Halo nuclei

- Here I define a halo nucleus as one in which the last nucleon (or nucleons) have $\mathrm{a}\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}$ that is markedly larger than the range, R , of the interaction it has with the rest of the nucleus-the core.
- Typically $\mathrm{R}=\mathrm{R}_{\text {core }} 2-3 \mathrm{fm}$.

Halo nuclei

- Here I define a halo nucleus as one in which the last nucleon (or nucleons) have $\mathrm{a}\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}$ that is markedly larger than the range, R , of the interaction it has with the rest of the nucleus-the core.
- Typically $\mathrm{R}=\mathrm{R}_{\text {core }} \sim 2-3 \mathrm{fm}$.
- And since $\left\langle r^{2}\right\rangle$ is related to the neutron separation energy we are looking for systems with neutron separation energies appreciably less than 1 MeV .

Halo nuclei

- Here I define a halo nucleus as one in which the last nucleon (or nucleons) have $\mathrm{a}\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}$ that is markedly larger than the range, R , of the interaction it has with the rest of the nucleus-the core.
- Typically $\mathrm{R} \equiv \mathrm{R}_{\text {core }} \sim 2-3 \mathrm{fm}$.
- And since $\left\langle r^{2}\right\rangle$ is related to the neutron separation energy we are looking for systems with neutron separation energies appreciably less than 1 MeV .
- Define $R_{\text {halo }}=\left\langle r^{2}\right\rangle^{1 / 2}$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo }}$.

Halo nuclei

- Here I define a halo nucleus as one in which the last nucleon (or nucleons) have $\mathrm{a}\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}$ that is markedly larger than the range, R , of the interaction it has with the rest of the nucleus-the core.
- Typically $\mathrm{R} \equiv \mathrm{R}_{\text {core }} 2-3 \mathrm{fm}$.
- And since $\left\langle r^{2}\right\rangle$ is related to the neutron separation energy we are looking for systems with neutron separation energies appreciably less than 1 MeV .
- Define $R_{\text {halo }}=\left\langle r^{2}\right\rangle^{1 / 2}$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo }}$.
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of halo EFT.

Probing halo nuclei

- Typically produced in unstable beams.
- Neutron pickup reactions, e.g. (p,d), in inverse kinematics are one way to investigate
- Here my concern will be with electromagnetic probes.

Probing halo nuclei

- Typically produced in unstable beams.
- Neutron pickup reactions, e.g. (p,d), in inverse kinematics are one way to investigate
- Here my concern will be with electromagnetic probes.
- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus

Probing halo nuclei

- Typically produced in unstable beams.
- Neutron pickup reactions, e.g. (p,d), in inverse kinematics are one way to investigate
- Here my concern will be with electromagnetic probes.
- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics

From disintegration to E1 strength

- Coulomb excitation dissociation cross section (p.v. b>>Rtarget)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

From disintegration to E1 strength

- Coulomb excitation dissociation cross section (p.v. b>>R target)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.

From disintegration to E1 strength

- Coulomb excitation dissociation cross section (p.v. b>>Rtarget)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.
- Virtual photon numbers computable in terms of relative velocity, equivalent photon frequency, impact parameter

From disintegration to E1 strength

- Coulomb excitation dissociation cross section (p.v. b>>Rtarget)

From disintegration to E1 strength

- Coulomb excitation dissociation cross section (p.v. b>>R target)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $\sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)$ can then be extracted: it's the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity $\pi \mathrm{L}$.

Our first halo nucleus: Carbon-19

Our first halo nucleus: Carbon-19

- ${ }^{19} \mathrm{C}$ neutron separation energy $=576 \mathrm{keV}$. Ground state $=1 / 2^{+}$
- First excitation in ${ }^{18} \mathrm{C}$ is 1.62 MeV above ground state
- Treat $1 / 2^{+}$as s-wave halo state: ${ }^{18} \mathrm{C}+\mathrm{n}$

Our first halo nucleus: Carbon-19

- ${ }^{19} \mathrm{C}$ neutron separation energy $=576 \mathrm{keV}$. Ground state $=1 / 2^{+}$
- First excitation in ${ }^{18} \mathrm{C}$ is 1.62 MeV above ground state
- Treat $1 / 2^{+}$as s-wave halo state: ${ }^{18} \mathrm{C}+\mathrm{n}$
- $\mathrm{B}_{\mathrm{lo}} / \mathrm{B}_{\mathrm{h}} \approx 1 / 3 \Rightarrow \mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }} \approx 0.5$

Our first halo nucleus: Carbon-19

- ${ }^{19} \mathrm{C}$ neutron separation energy $=576 \mathrm{keV}$. Ground state $=1 / 2^{+}$
- First excitation in ${ }^{18} \mathrm{C}$ is 1.62 MeV above ground state
- Treat $1 / 2^{+}$as s-wave halo state: ${ }^{18} \mathrm{C}+\mathrm{n}$
- $\mathrm{B}_{\mathrm{l} \text { / }} / \mathrm{Bn}_{\text {i }} \approx 1 / 3 \Rightarrow \mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }} \approx 0.5$
- Data, including cut on impact parameter

Nakamura et al. (2003)

Our approach

Our approach

- S-wave (and P-wave) states generated by cn contact interactions

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n -core interaction, spectroscopic factors

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right)
$$

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n -core interaction, spectroscopic factors

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right)
$$

- "Halo EFT", expansion in Rcore/Rhalo.

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n -core interaction, spectroscopic factors

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right)
$$

- "Halo EFT", expansion in Rcore/Rhalo.
- ${ }^{19} \mathrm{C}$: input at LO: neutron separation energy of s-wave state. Output at LO: Coulomb dissociation of s-wave state, radius of state.

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n -core interaction, spectroscopic factors

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right)
$$

- "Halo EFT", expansion in Rcore/Rhalo.
- ${ }^{19} \mathrm{C}$: input at LO: neutron separation energy of s-wave state. Output at LO: Coulomb dissociation of s-wave state, radius of state.
- A_{0} ("wf renormalization") can be fit at NLO.

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n -core interaction, spectroscopic factors

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right)
$$

- "Halo EFT", expansion in Rcore/Rhalo.
- ${ }^{19} \mathrm{C}$: input at LO: neutron separation energy of s-wave state. Output at LO: Coulomb dissociation of s-wave state, radius of state.
- A_{0} ("wf renormalization") can be fit at NLO.
- Situation is different for P -wave state $\mathrm{in}^{11} \mathrm{Be}$, but that comes later....

Lagrangian I: shallow s-wave state

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma-g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]
\end{aligned}
$$

Lagrangian I: shallow s-wave state

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma-g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]
\end{aligned}
$$

- c, n: "core", "neutron" fields. c: boson, n: fermion.
- σ : s-wave field

Lagrangian I: shallow s-wave state

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma-g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]
\end{aligned}
$$

- c, n: "core", "neutron" fields. c: boson, n: fermion.
- σ : s-wave field
- Minimal substitution \rightarrow dominant EM interactions; other terms suppressed by additional powers of $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$

Lagrangian I: shallow s-wave state

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma-g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]
\end{aligned}
$$

- c, n: "core", "neutron" fields. c: boson, n: fermion.
- σ : s-wave field
- Minimal substitution \rightarrow dominant EM interactions; other terms suppressed by additional powers of $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- ...if coefficients natural. But that's a testable assumption.

Dressing the s-wave state

Dressing the s-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern

- onc coupling go of order Rhalo, nc loop of order 1/Rhalo. Therefore need to sum all bubbles:

Dressing the s-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern

- onc coupling go of order Rhalo, nc loop of order 1/Rhalo. Therefore need to sum all bubbles:

Dressing the s-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern

- onc coupling go of order Rhalo, nc loop of order 1/Rhalo. Therefore need to sum all bubbles:

$$
\begin{gathered}
\longrightarrow \\
D_{\sigma}(p)=\frac{1}{\Delta_{0}+\eta_{0}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\sigma}(p)} \\
\Sigma_{\sigma}(p)=-\frac{g_{0}^{2} m_{R}}{2 \pi}\left[\mu+i \sqrt{2 m_{R}\left(p_{0}-\frac{\mathbf{p}^{2}}{2 M_{n c}}+i \eta\right)}\right] \quad \text { (PDS) }
\end{gathered}
$$

Dressing the s-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern

- onc coupling go of order Rhalo, nc loop of order 1/Rhalo. Therefore need to sum all bubbles:

Dressing the s-wave state

- onc coupling go of order Rhalo, nc loop of order $1 / R_{\text {halo }}$. Therefore need to sum all bubbles:

$D_{\sigma}(p)=\frac{2 \pi \gamma_{0}}{m_{R}^{2} g_{0}^{2}} \frac{1}{1-r_{0} \gamma_{0}} \frac{1}{p_{0}-\frac{\mathbf{p}^{2}}{2 M_{n c}}+B_{0}}+$ regular

Predicting dissociation

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0} ; r_{0} \sim R_{\text {core }}$. $r_{0}=0$ at $L O$.

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0} ; r_{0} \sim R_{\text {core }} . r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter= $0.16 \mathrm{fm}^{-1}$

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0} ; r_{0} \sim R_{\text {core }} . r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter= $=0.16 \mathrm{fm}^{-1}$

$$
\mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0}$; $r_{\sim} \sim R_{\text {core }}$. $r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter= $=0.16 \mathrm{fm}^{-1}$

$$
\overline{\mathcal{M}}_{E 1}=A_{0} e Z_{e f f} \sqrt{3} \frac{2 p^{\prime}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{2}}
$$

$Z_{\text {effi }}=6 / 19$

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0}$; $r^{\circ} \sim R_{\text {core }}$. $r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter= $=0.16 \mathrm{fm}^{-1}$

$$
\overline{\mathcal{M}}_{E 1}=A_{0} e Z_{e f f} \sqrt{3} \frac{2 p^{\prime}}{\left(p^{2}+\gamma_{0}^{2}\right)^{2}}
$$

- Final-state interactions suppressed by $\left(\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0} ; r_{0} \sim R_{\text {core }}$. $\mathrm{r}_{0}=0$ at LO .
- Leading order: no FSI, γ_{0} is only free parameter=0.16 fm^{-1}

$$
\overline{\mathcal{M}}_{E 1}=A_{0} e Z_{e f f} \sqrt{3} \frac{2 p^{\prime}}{\left(p^{2}+\gamma_{0}^{2}\right)^{2}}
$$

$$
Z_{\text {effi }}=6 / 19
$$

- Final-state interactions suppressed by $\left(\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$
- First gauge-invariant contact operator: $L_{E 1} \sigma^{\dagger} \mathbf{E} \cdot(n \stackrel{\leftrightarrow}{\nabla} c)+$ h.c.

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0}$; $r_{0} \sim R_{\text {core }}$. $r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter= $0.16 \mathrm{fm}^{-1}$

$$
\overline{\mathcal{M}}_{E 1}=A_{0} e Z_{e f f} \sqrt{3} \frac{2 p^{\prime}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{2}}
$$

$$
Z_{\text {effi }}=6 / 19
$$

- Final-state interactions suppressed by $\left(\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$
- First gauge-invariant contact operator: $L_{E 1} \sigma^{\dagger} \mathbf{E} \cdot(n \stackrel{\leftrightarrow}{\nabla} c)+$ h.c.
- Need modified NDA to account for shallow S-wave state. LE1 enters in corrections suppressed by ($\left.\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halol }}\right)^{4}$

Predicting dissociation

- Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0}$; $r_{0} \sim R_{\text {core }}$. $r_{0}=0$ at $L O$.
- Leading order: no FSI, γ_{0} is only free parameter=0.16 fm-1

$$
\overline{\mathcal{M}}_{E 1}=A_{0} e Z_{e f f} \sqrt{3} \frac{2 p^{\prime}}{\left(p^{2}+\gamma_{0}^{2}\right)^{2}}
$$

- Final-state interactions suppressed by $\left(\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$
- First gauge-invariant contact operator: $L_{E 1} \sigma^{\dagger} \mathbf{E} \cdot(n \stackrel{\leftrightarrow}{\nabla} c)+$ h.c.
- Need modified NDA to account for shallow S-wave state. LE1 enters in corrections suppressed by $\left(R_{\text {corer }} / R_{\text {halo }}\right)^{4}$
- Consistent with short-distance piece of FSI loop due to P-wave interactions

Results

Results

- Observable is $\mathrm{dB}(\mathrm{E} 1) / \mathrm{dE}$: E 1 strength for transition to a core + neutron state, per unit energy, as function of energy (momentum) of the outgoing nc pair

Results

- Observable is $\mathrm{dB}(\mathrm{E} 1) / \mathrm{dE}$: E 1 strength for transition to a core + neutron state, per unit energy, as function of energy (momentum) of the outgoing nc pair
- Multiply by $\mathrm{N}_{\mathrm{E}_{1}}\left(\mathrm{E}_{\gamma}\right)$:

Results

- Observable is $\mathrm{dB}(\mathrm{E} 1) / \mathrm{dE}: \mathrm{E} 1$ strength for transition to a core + neutron state, per unit energy, as function of energy (momentum) of the outgoing nc pair
- Multiply by $\mathrm{N}_{\mathrm{E} 1}\left(\mathrm{E}_{\gamma}\right)$:
- ro fixed from fitting height of peak at NLO
$\sim A_{0}^{2}=\frac{2 \gamma_{0}}{1-r_{0} \gamma_{0}}$
- γ_{0} determines peak position

Results

- Observable is $\mathrm{dB}(\mathrm{E} 1) / \mathrm{dE}$: E 1 strength for transition to a core + neutron state, per unit energy, as function of energy (momentum) of the outgoing nc pair
- Multiply by $\mathrm{N}_{\mathrm{E}_{1}}\left(\mathrm{E}_{\gamma}\right)$:
- ro fixed from fitting height of peak at NLO

$$
\sim A_{0}^{2}=\frac{2 \gamma_{0}}{1-r_{0} \gamma_{0}}
$$

- γ_{0} determines peak position
- Determine S-wave ${ }^{18} \mathrm{C}$-n scattering parameters from dissociation data.

S-wave form factor

S-wave form factor

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

S-wave form factor

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

$\mathrm{G}_{\mathrm{c}}=e \mathrm{Q}_{\mathrm{c}}$ at $|\mathbf{q}|=0$

S-wave form factor

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

$\mathrm{G}_{\mathrm{c}}=e \mathrm{Q}_{\mathrm{c}}$ at $|\mathbf{q}|=0$

$$
\left\langle r_{E}^{2}\right\rangle=\frac{f^{2}}{2 \gamma_{0}^{2}}
$$

S-wave form factor

$-i \Gamma_{c}(q)$

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

$\mathrm{G}_{\mathrm{c}}=\mathrm{eQ}_{\mathrm{c}}$ at $|\mathbf{q}|=0$

$$
\left\langle r_{E}^{2}\right\rangle=\frac{f^{2}}{2 \gamma_{0}^{2}}
$$

Next correction: $A_{0}>\sqrt{ } 2 \gamma_{0}$, i.e. correction to strength of tail of $1 / 2^{+}$ wave function. Obtained from dissociation cross section

S-wave form factor

$-i \Gamma_{c}(q)$

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

$$
\mathrm{G}_{\mathrm{c}}=\mathrm{e} \mathrm{Q}_{\mathrm{c}} \text { at }|\mathbf{q}|=0
$$

Next correction: $A_{0}>\sqrt{ } 2 \gamma_{0}$, i.e. correction to strength of tail of $1 / 2^{+}$ wave function. Obtained from dissociation cross section

First purely short-distance effect $L_{c o, 2} \sigma^{\dagger} \nabla^{2} A_{0} \sigma$: suppressed by ($\left.R_{\text {core }} / R_{\text {halo }}\right)^{3}$

S-wave form factor

$-i \Gamma_{c}(q)$

$$
\begin{gathered}
G_{c}(|\mathbf{q}|)=e Q_{c} \frac{2 \gamma_{0}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma_{0}}\right) \\
\mathrm{f}=\mathrm{m} / \mathrm{M}_{\mathrm{nc}}=\mathrm{m}_{\mathrm{R}} / \mathrm{M}
\end{gathered}
$$

$$
\mathrm{G}_{\mathrm{c}}=\mathrm{e} \mathrm{Q}_{\mathrm{c}} \text { at }|\mathbf{q}|=0
$$

$$
\left\langle r_{E}^{2}\right\rangle=\frac{f^{2}}{2 \gamma_{0}^{2}}
$$

Next correction: $A_{0}>\sqrt{ } 2 \gamma_{0}$, i.e. correction to strength of tail of $1 / 2^{+}$ wave function. Obtained from dissociation cross section

First purely short-distance effect $L_{c o, 2} \sigma^{\dagger} \nabla^{2} A_{0} \sigma$: suppressed by ($\left.R_{\text {core }} / R_{\text {halo }}\right)^{3}$

$$
\begin{aligned}
\left(\left\langle\mathrm{rE}^{2}>_{\mathrm{C} 19-}-\left\langle\mathrm{r}_{\mathrm{E}}^{2}>\mathrm{C} 18\right)^{1 / 2}=\right.\right. & 0.23+ \\
\mathrm{LO} \quad & 0.08 \mathrm{fm} \\
& \mathrm{NLO}
\end{aligned}
$$

Beryllium-11 as a (one-neutron)* halo nucleus

Beryllium-11 as a (one-neutron)* halo nucleus

- First excitation in ${ }^{10} \mathrm{Be}: 3.4 \mathrm{MeV},{ }^{10} \mathrm{Be}$ ground state is 0^{+}
- ${ }^{11}$ Be neutron separation energy=504 keV. Ground state=1/2+
- Excited state $320 \pm 100 \mathrm{keV}$ above ground state, $1 / 2^{-}$

Beryllium-11 as a (one-neutron)* halo nucleus

- First excitation in ${ }^{10} \mathrm{Be}: 3.4 \mathrm{MeV},{ }^{10} \mathrm{Be}$ ground state is 0^{+}
- ${ }^{11}$ Be neutron separation energy=504 keV. Ground state=1/2+
- Excited state $320 \pm 100 \mathrm{keV}$ above ground state, $1 / 2^{-}$
- TWO halo states, one s-wave and one p-wave

Beryllium-11 as a (one-neutron)* halo nucleus

- First excitation in ${ }^{10} \mathrm{Be}: 3.4 \mathrm{MeV},{ }^{10} \mathrm{Be}$ ground state is 0^{+}
- ${ }^{11}$ Be neutron separation energy $=504 \mathrm{keV}$. Ground state= $=1 / 2^{+}$
- Excited state $320 \pm 100 \mathrm{keV}$ above ground state, $1 / 2^{-}$
- TWO halo states, one s-wave and one p-wave
- $\mathrm{n}^{10} \mathrm{Be}$ scattering, $\mathrm{l}=1, \mathrm{j}=1 / 2$ channel, resonant scattering apparent

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right) ; u_{1}(r)=A_{1} \exp \left(-\gamma_{1} r\right)\left(1+\frac{1}{\gamma_{1} r}\right)
$$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008) *could also be thought of as a $3 n$ halo

Beryllium-11 as a (one-neutron)* halo nucleus

- First excitation in ${ }^{10} \mathrm{Be}: 3.4 \mathrm{MeV},{ }^{10} \mathrm{Be}$ ground state is 0^{+}
- ${ }^{11}$ Be neutron separation energy $=504 \mathrm{keV}$. Ground state= $=1 / 2^{+}$
- Excited state $320 \pm 100 \mathrm{keV}$ above ground state, $1 / 2^{-}$
- TWO halo states, one s-wave and one p-wave
- $\mathrm{n}^{10} \mathrm{Be}$ scattering, $\mathrm{l}=1, \mathrm{j}=1 / 2$ channel, resonant scattering apparent

$$
u_{0}(r)=A_{0} \exp \left(-\gamma_{0} r\right) ; u_{1}(r)=A_{1} \exp \left(-\gamma_{1} r\right)\left(1+\frac{1}{\gamma_{1} r}\right)
$$

- $\mathrm{B}_{\mathrm{lo}} / \mathrm{B}_{\text {hi }} \approx 1 / 6 \Rightarrow \mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }} \approx 0.4$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008) *could also be thought of as a $3 n$ halo

Electromagnetic properties

Electromagnetic properties

- $B(E 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.105(12) e^{2 f} \mathrm{fm}^{2}$ from intermediate-energy Coulomb excitation (Summers et al., 2007)
- $\mathrm{B}(\mathrm{E} 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.116(12) \mathrm{e}^{2} \mathrm{fm}{ }^{2}$ from lifetime measurements (Millener et al., 1983)

Electromagnetic properties

- $B(E 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.105(12) e^{2} \mathrm{fm}^{2}$ from intermediate-energy Coulomb excitation (Summers et al., 2007)
- $\mathrm{B}(\mathrm{E} 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.116(12) \mathrm{e}^{2} \mathrm{fm}{ }^{2}$ from lifetime measurements (Millener et al., 1983)

Coulomb-induced breakup of ${ }^{11} \mathrm{Be}$, Palit et al. (2003), c.f. Fukuda et al. (2004)

Electromagnetic properties

- $B(E 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.105(12) e^{2} \mathrm{fm}^{2}$ from intermediate-energy Coulomb excitation (Summers et al., 2007)
- $\mathrm{B}(\mathrm{E} 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.116(12) \mathrm{e}^{2} \mathrm{fm}{ }^{2}$ from lifetime measurements (Millener et al., 1983)

Coulomb-induced breakup of ${ }^{11} \mathrm{Be}$, Palit et al. (2003), c.f. Fukuda et al. (2004)

Non-energy-weighted sum rule:

$$
B\left(E 1, l_{i}\right)=\left[Z_{e f f}^{(1)} e\right]^{2} \frac{3}{4 \pi}\left\langle r^{2}\right\rangle_{l_{i}}
$$

Electromagnetic properties

- $B(E 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.105(12) e^{2} \mathrm{fm}^{2}$ from intermediate-energy Coulomb excitation (Summers et al., 2007)
- $\mathrm{B}(\mathrm{E} 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.116(12) \mathrm{e}^{2} \mathrm{fm}{ }^{2}$ from lifetime measurements (Millener et al., 1983)

Coulomb-induced breakup of ${ }^{11} \mathrm{Be}$, Palit et al. (2003), c.f. Fukuda et al. (2004)

$$
Z_{\text {eff }}=4 / 11
$$

Non-energy-weighted sum rule:

$$
\begin{gathered}
B\left(E 1, l_{i}\right)=\left[Z_{\text {eff }}^{(1)} e\right]^{2} \frac{3}{4 \pi}\left\langle r^{2}\right\rangle_{l_{i}} \\
\left\langle r^{2}\right\rangle^{1 / 2}=5.7(4) \mathrm{fm}
\end{gathered}
$$

Electromagnetic properties

- $B(E 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.105(12) e^{2} \mathrm{fm}^{2}$ from intermediate-energy Coulomb excitation (Summers et al., 2007)
- $\mathrm{B}(\mathrm{E} 1)\left(1 / 2^{+} \rightarrow 1 / 2^{-}\right)=0.116(12) \mathrm{e}^{2} \mathrm{fm}{ }^{2}$ from lifetime measurements (Millener et al., 1983)

Coulomb-induced breakup of ${ }^{11} \mathrm{Be}$, Palit et al. (2003), c.f. Fukuda et al. (2004)

$$
Z_{\text {eff }}=4 / 11
$$

Non-energy-weighted sum rule:

$$
\begin{gathered}
B\left(E 1, l_{i}\right)=\left[Z_{\text {eff }}^{(1)} e\right]^{2} \frac{3}{4 \pi}\left\langle r^{2}\right\rangle_{l_{i}} \\
\left\langle r^{2}\right\rangle^{1 / 2}=5.7(4) \mathrm{fm}
\end{gathered}
$$

c.f. atomic-physics measurement of radii

Noerterhaneser et al., PRL (2009)

Lagrangian II: shallow S- and P-states

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma+\pi_{j}^{\dagger}\left[\eta_{1}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{1}\right] \pi_{j} \\
& -g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]-\frac{g_{1}}{2}\left[\pi_{j}^{\dagger}\left(n i \overleftrightarrow{\nabla}_{j} c\right)+\left(c^{\dagger} i \stackrel{\leftrightarrow}{\nabla}_{j} n^{\dagger}\right) \pi_{j}\right] \\
& -\frac{g_{1}}{2} \frac{M-m}{M_{n c}}\left[\pi_{j}^{\dagger} i \vec{\nabla}_{j}(n c)-i \overleftrightarrow{\nabla}_{j}\left(n^{\dagger} c^{\dagger}\right) \pi_{j}\right]+\ldots,
\end{aligned}
$$

- c, n: "core", "neutron" fields. c: boson, n: fermion.
- σ, π_{j} : S-wave and P -wave fields
- Compute power of non-minimal EM couplings by NDA with rescaled fields.

Dressing the P-wave state

Dressing the P-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

- Proceed similarly for p-wave state:

Dressing the P-wave state

- Proceed similarly for p-wave state:

$$
D_{\pi}(p)=\frac{1}{\Delta_{1}+\eta_{1}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\pi}(p)}
$$

Dressing the P-wave state

- Proceed similarly for p-wave state:

$$
\begin{gathered}
\Longrightarrow=\stackrel{\text { C }}{=} \\
D_{\pi}(p)=\frac{1}{\Delta_{1}+\eta_{1}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\pi}(p)} \\
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
\end{gathered}
$$

Dressing the P-wave state

- Proceed similarly for p-wave state:

$$
\begin{gathered}
=\stackrel{\sim}{=}+\cdots \\
D_{\pi}(p)=\frac{1}{\Delta_{1}+\eta_{1}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\pi}(p)} \\
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
\end{gathered}
$$

- Here both parameters (Δ_{1} and g_{1}) are mandatory for renormalization at LO

Dressing the P-wave state

- Proceed similarly for p-wave state:

$$
\begin{gathered}
D_{\pi}(p)=\frac{1}{\Delta_{1}+\eta_{1}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\pi}(p)} \\
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
\end{gathered}
$$

- Here both parameters (Δ_{1} and g_{1}) are mandatory for renormalization at LO

$$
D_{\pi}(p)=-\frac{3 \pi}{m_{R}^{2} g_{1}^{2}} \frac{2}{r_{1}+3 \gamma_{1}} \frac{i}{p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)+B_{1}}+\text { regular }
$$

Fixing P-wave parameters

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$
- Also need to fix r_{1} at LO, we anticipate $r_{1} \sim 1 / R_{\text {core }}$

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$
- Also need to fix r_{1} at LO, we anticipate $r_{1} \sim 1 / R_{\text {core }}$
- $k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right)$ at LO; $\left(k \sim \gamma_{1} \Rightarrow r_{1} k^{2} \gg \gamma_{1}{ }^{3}\right)$

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$
- Also need to fix r_{1} at LO, we anticipate $r_{1} \sim 1 / R_{\text {core }}$
- $k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right)$ at LO; $\left(k \sim \gamma_{1} \Rightarrow r_{1} k^{2} \gg \gamma_{1}{ }^{3}\right)$
- Note: $a_{1} \sim R_{\text {halo }}{ }^{2} R_{\text {core }}$ c.f. original scenario of Bertulani et al. a $a_{1} \sim R_{\text {halo }}{ }^{3}$

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$
- Also need to fix r_{1} at LO, we anticipate $r_{1} \sim 1 / R_{\text {core }}$
- $k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right)$ at LO; $\left(k \sim \gamma_{1} \Rightarrow r_{1} k^{2} \gg \gamma_{1}{ }^{3}\right)$
- Note: $a_{1} \sim R_{\text {halo }}{ }^{2} R_{\text {core }}$ c.f. original scenario of Bertulani et al. a $a_{1} \sim R_{\text {halo }}{ }^{3}$
- We are going to use the $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$strength to fix r_{1}.

Fixing P-wave parameters

- Input at LO: neutron separation energy of s-wave and p-wave state, $B_{0}=504$ $\mathrm{keV}, \mathrm{B}_{1}=184 \mathrm{keV}$
- $\Rightarrow \gamma_{0}=0.15 \mathrm{fm}^{-1} ; \gamma_{1}=0.09 \mathrm{fm}^{-1}$ both $\sim 1 / R_{\text {nalo }}$
- Also need to fix r_{1} at LO, we anticipate $r_{1} \sim 1 / R_{\text {core }}$
- $k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right)$ at LO; $\left(k \sim \gamma_{1} \Rightarrow r_{1} k^{2} \gg \gamma_{1}{ }^{3}\right)$
- Note: $a_{1} \sim R_{\text {halo }}{ }^{2} R_{\text {core }}$, c.f. original scenario of Bertulani et al. $a_{1} \sim R_{\text {halo }}{ }^{3}$
- We are going to use the $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$strength to fix r_{1}.
- No propagation of experimental errors here, but it's easy to do

Irreducible S-to-P vertex: bound-to-bound transition

$$
-i \Gamma_{j \mu}(k)
$$

$$
\mathbf{k}^{0}=\omega
$$

Irreducible S-to-P vertex: bound-to-bound transition

$k^{0}=\omega$

Divergences cancel, as they should

Irreducible S-to-P vertex: bound-to-bound transition

$-\mathrm{i} \Gamma_{\mathrm{j} \mu}(\mathrm{k})$

$k^{0}=\omega$

Divergences cancel, as they should
$\Gamma_{j i}=\delta_{j i} \Gamma_{E}+k_{j} q_{i} \Gamma_{M}$ for $\mathbf{k} \cdot \mathbf{q}=0 ; \mathbf{k} \cdot \boldsymbol{\varepsilon}=0$

Irreducible S-to-P vertex: bound-to-bound transition

$-i \Gamma_{j \mu}(k)$

$k^{0}=\omega$

Divergences cancel, as they should
$\Gamma_{j i}=\delta_{j i} \Gamma_{E}+k_{j} q_{i} \Gamma_{M} \quad$ for $\mathbf{k} \cdot \mathbf{q}=0 ; \mathbf{k} \cdot \boldsymbol{\varepsilon}=0$
Exploit current conservation $\mathrm{k}^{\mu} \Gamma_{\mathrm{j} \mu}=0$

Irreducible S-to-P vertex: bound-to-bound transition

$-i \Gamma_{j \mu}(k)$

$k^{0}=\omega$

Divergences cancel, as they should
$\Gamma_{j i}=\delta_{j i} \Gamma_{E}+k_{j} q_{i} \Gamma_{M} \quad$ for $\mathbf{k} \cdot \mathbf{q}=0 ; \mathbf{k} \cdot \boldsymbol{\varepsilon}=0$
Exploit current conservation $\mathrm{k}^{\mu} \Gamma_{\mathrm{j} \mu}=0$

$$
\Rightarrow \omega \Gamma_{\mathrm{j} 0}=\mathrm{k}_{\mathrm{j}} \Gamma_{\mathrm{E}}
$$

Irreducible S-to-P vertex: bound-to-bound transition

$-i \Gamma_{j \mu}(k)$

Divergences cancel, as they should
$\Gamma_{j i}=\delta_{j i} \Gamma_{E}+k_{j} q_{i} \Gamma_{M} \quad$ for $\mathbf{k} \cdot \mathbf{q}=0 ; \mathbf{k} \cdot \boldsymbol{\varepsilon}=0$
Exploit current conservation $\mathrm{k}^{\mu} \Gamma_{\mathrm{j} \mu}=0$

$$
\Rightarrow \omega \Gamma_{\mathrm{j} 0}=\mathrm{k}_{\mathrm{j}} \Gamma_{\mathrm{E}}
$$

$\Gamma_{j 0}(\mathbf{k}) \sim \int d^{3} r \frac{u_{1}(r)}{r} Y_{1 j}(\hat{r}) e^{i \mathbf{k} \cdot \mathbf{r}} \frac{u_{0}(r)}{r}$

Irreducible S-to-P vertex: bound-to-bound transition

$-i \Gamma_{j \mu}(k)$

Divergences cancel, as they should

$$
\Gamma_{j i}=\delta_{j i} \Gamma_{E}+k_{j} q_{i} \Gamma_{M} \quad \text { for } \mathbf{k} \cdot \mathbf{q}=0 ; \mathbf{k} \cdot \boldsymbol{\varepsilon}=0
$$

Exploit current conservation $\mathrm{k}^{\mu} \Gamma_{\mathrm{ju}}=0$

$$
\begin{aligned}
& \Rightarrow \omega \Gamma_{\mathrm{j} 0}=\mathrm{k}_{\mathrm{j}} \Gamma_{\mathrm{E}} \\
& \Gamma_{j 0}(\mathbf{k}) \sim \int d^{3} r \frac{u_{1}(r)}{r} Y_{1 j}(\hat{r}) e^{i \mathbf{k} \cdot \mathbf{r}} \frac{u_{0}(r)}{r} \\
& \rightarrow \\
& \mathbf{k}_{j} \int d r u_{1}(r) r u_{0}(r) \text { as }|\mathbf{k}| \rightarrow \mathbf{0} \quad \begin{array}{l}
\text { E1 matrix } \\
\text { element }
\end{array}
\end{aligned}
$$

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

$$
\begin{aligned}
B(E 1) & =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{\gamma_{0} \gamma_{1}^{2}}{\left(-r_{1}-3 \gamma_{1}\right)} \frac{4}{3}\left[\int d r\left(1+\frac{1}{\gamma_{1} r}\right) e^{-\gamma_{1} r} r e^{-\gamma_{0} r}\right]^{2} \\
& =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{4 \gamma_{0}}{-3 r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}+\ldots
\end{aligned}
$$

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

$$
\begin{aligned}
B(E 1) & =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{\gamma_{0} \gamma_{1}^{2}}{\left(-r_{1}-3 \gamma_{1}\right)} \frac{4}{3}\left[\int d r\left(1+\frac{1}{\gamma_{1} r}\right) e^{-\gamma_{1} r} r e^{-\gamma_{0} r}\right]^{2} \\
& =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{4 \gamma_{0}}{-3 r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}+\ldots
\end{aligned}
$$

- No cutoff parameter needed: integral finite without regularization

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

$$
\begin{aligned}
B(E 1) & =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{\gamma_{0} \gamma_{1}^{2}}{\left(-r_{1}-3 \gamma_{1}\right)} \frac{4}{3}\left[\int d r\left(1+\frac{1}{\gamma_{1} r}\right) e^{-\gamma_{1} r} r e^{-\gamma_{0} r}\right]^{2} \\
& =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{4 \gamma_{0}}{-3 r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}+\ldots
\end{aligned}
$$

- No cutoff parameter needed: integral finite without regularization
- Numbers: Bıo(E1)=0.106 $\mathrm{e}^{2} \mathrm{fm}^{2}$, yields $\mathrm{r}_{1}=-0.66 \mathrm{fm}^{-1}$

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

$$
\begin{aligned}
B(E 1) & =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{\gamma_{0} \gamma_{1}^{2}}{\left(-r_{1}-3 \gamma_{1}\right)} \frac{4}{3}\left[\int d r\left(1+\frac{1}{\gamma_{1} r}\right) e^{-\gamma_{1} r} r e^{-\gamma_{0} r}\right]^{2} \\
& =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{4 \gamma_{0}}{-3 r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}+\ldots
\end{aligned}
$$

- No cutoff parameter needed: integral finite without regularization
- Numbers: BLo(E1)=0.106 e2fm², yields $\mathrm{r}_{1}=-0.66 \mathrm{fm}^{-1}$
- NLO corrections from A_{0} and γ_{1} / r_{1} corrections to A_{1}

Converting to result for S-to-P transition

Keeping track of constants, defn of $\mathrm{B}(\mathrm{E} 1): B(E 1)=\frac{1}{4 \pi}\left(\frac{\bar{\Gamma}_{E}}{\omega}\right)^{2}$

$$
\begin{aligned}
B(E 1) & =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{\gamma_{0} \gamma_{1}^{2}}{\left(-r_{1}-3 \gamma_{1}\right)} \frac{4}{3}\left[\int d r\left(1+\frac{1}{\gamma_{1} r}\right) e^{-\gamma_{1} r} r e^{-\gamma_{0} r}\right]^{2} \\
& =\frac{Z_{e f f}^{2} e^{2}}{4 \pi} \frac{4 \gamma_{0}}{-3 r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}+\ldots
\end{aligned}
$$

- No cutoff parameter needed: integral finite without regularization
- Numbers: BLo(E1)=0.106 e2fm², yields $\mathrm{r}_{1}=-0.66 \mathrm{fm}^{-1}$
- NLO corrections from A_{0} and γ_{1} / r_{1} corrections to A_{1}
- Also first contribution of physics at scale Reore occurs at NLO

Computing dissociation: $\gamma_{E 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

Computing dissociation: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

- Note that final state can be spin- $1 / 2$ or spin- $3 / 2$: final-state interactions are "nautral" in the spin- $3 / 2$ channel, i.e. suppressed by three orders.

Computing dissociation: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

- Note that final state can be spin-1/2 or spin-3/2: final-state interactions are "nautral" in the spin- $3 / 2$ channel, i.e. suppressed by three orders.
- FSI in spin- $1 / 2$ channel: stronger, but "kinematic" nature of p-wave state implies interaction still perturbative away from resonance:

Computing dissociation: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

- Note that final state can be spin-1/2 or spin-3/2: final-state interactions are "nautral" in the spin- $3 / 2$ channel, i.e. suppressed by three orders.
- FSI in spin- $1 / 2$ channel: stronger, but "kinematic" nature of p-wave state implies interaction still perturbative away from resonance:

$$
k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}^{2}\right) \Rightarrow \delta_{1} \sim R_{\text {core }} / R_{\text {halo }} \text { if } k \sim 1 / R_{\text {halo }} \sim \gamma_{1} .
$$

Computing dissociation: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

- Note that final state can be spin-1/2 or spin-3/2: final-state interactions are "nautral" in the spin- $3 / 2$ channel, i.e. suppressed by three orders.
- FSI in spin- $1 / 2$ channel: stronger, but "kinematic" nature of p-wave state implies interaction still perturbative away from resonance:

$$
k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}^{2}\right) \Rightarrow \delta_{1} \sim R_{\text {core }} / R_{\text {halo }} \text { if } k \sim 1 / R_{\text {halo }} \sim \gamma_{1} .
$$

LO

NLO

Computing dissociation: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

- Note that final state can be spin-1/2 or spin-3/2: final-state interactions are "nautral" in the spin- $3 / 2$ channel, i.e. suppressed by three orders.
- FSI in spin- $1 / 2$ channel: stronger, but "kinematic" nature of p-wave state implies interaction still perturbative away from resonance:

- Also get corrections to A_{0} (a.k.a. wf renormalization) at NLO

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

- Expand in Rcore/Rhalo:

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

- Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:

$$
{\frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}}^{L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

- Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:

$$
\begin{aligned}
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \quad \text { No FSI } \\
& {\frac{d \mathrm{~B}(\mathrm{E} 1)^{2}}{d E}}^{N L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right)
\end{aligned}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

- Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:

$$
\begin{aligned}
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{\text {eff }}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \quad \text { No FSI } \\
& \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}^{N L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right)
\end{aligned}
$$

Wf renormalization

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

- Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:

$$
\begin{aligned}
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \\
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E}
\end{aligned}{ }^{\text {Wf renormalization }}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right){ }^{2} \mathrm{P}_{1 / 2} \text {-wave FSI }
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\uparrow \\
\text { Spin-1/2 channel } \quad \text { Spin-3/2 channel }
\end{gathered}
$$

- Expand in R Rorere $^{\text {/Rhalo }}$:

$$
\begin{align*}
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \\
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E}
\end{align*}{ }^{\text {No FSI }}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right) \underbrace{2} \mathrm{P}_{1 / 2} \text {-wave FSI }
$$

- Higher-order corrections to phase shift at NNLO. Appearance of Sto ${ }^{2} \mathrm{P}_{1 / 2} \mathrm{E} 1$ counterterm also at that order.

Coulomb dissociation: result

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :
$r_{0}=2.7 \mathrm{fm}$
- Value of r_{1} used to fit $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$works here too.

Coulomb dissociation: result

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :
$r_{0}=2.7 \mathrm{fm}$
- Value of r_{1} used to fit $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$works here too.

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{48}{\pi^{2} B_{0}} \frac{y^{3}}{\left(y^{2}+1\right)^{4}}\left[e^{2} Q_{c}^{2} \Delta\left\langle r_{E}^{2}\right\rangle^{(\sigma)}-\frac{3 \pi}{4} B(E 1) \frac{(1+x)^{4}\left(1+3 y^{2}\right)}{\left(y^{2}+x^{2}\right)(1+2 x)^{2}}\right]
$$

Output

Output

- Value obtained for ro_{0} implies $\left(\left\langle\mathrm{r}^{2}\right\rangle+\left\langle\mathrm{re}_{\mathrm{E}}, \mathrm{Be} 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at $\mathrm{LO}, 2.43 \mathrm{fm}$ at NLO

Output

- Value obtained for r_{0} implies $\left(\left\langle\mathrm{r}^{2}\right\rangle+\left\langle\mathrm{re}_{\mathrm{E}}, \mathrm{Be} 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at $\mathrm{LO}, 2.43 \mathrm{fm}$ at NLO
- Experimental result $\left\langle\mathrm{rBet1}^{2}\right\rangle^{1 / 2}=2.463(16) \mathrm{fm}$

Output

- Value obtained for ro_{0} implies $\left(\left\langle\mathrm{r}^{2}\right\rangle+\left\langle\mathrm{re}_{\mathrm{E}}, \mathrm{Be} 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at $\mathrm{LO}, 2.43 \mathrm{fm}$ at NLO
- Experimental result $\left\langle\mathrm{rBet1}^{2}\right\rangle^{1 / 2}=2.463(16) \mathrm{fm}$
- $r_{1}=-0.66 \pm 0.29 \mathrm{fm}^{-1}$ implies $a_{1}=374 \pm 150 \mathrm{fm}^{3}$

Output

- Value obtained for r_{0} implies $\left(\left\langle\mathrm{rE}^{2}\right\rangle+\left\langle\mathrm{re}_{\mathrm{E}}, \mathrm{Be} 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at $\mathrm{LO}, 2.43 \mathrm{fm}$ at NLO
- Experimental result $\left\langle\mathrm{rBet1}^{2}\right\rangle^{1 / 2}=2.463(16) \mathrm{fm}$
- $r_{1}=-0.66 \pm 0.29 \mathrm{fm}^{-1}$ implies $a_{1}=374 \pm 150 \mathrm{fm}^{3}$
- Information on P-wave interactions from dissociation, but only at NLO

Output

- Value obtained for r_{0} implies $\left(\left\langle r_{E}^{2}\right\rangle+\left\langle r_{E}, \text { Be } 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at LO, 2.43 fm at NLO
- Experimental result $\left\langle\mathrm{rBet1}^{2}\right\rangle^{1 / 2}=2.463(16) \mathrm{fm}$
- $r_{1}=-0.66 \pm 0.29 \mathrm{fm}^{-1}$ implies $\mathrm{a}_{1}=374 \pm 150 \mathrm{fm}^{3}$
- Information on P-wave interactions from dissociation, but only at NLO
- P-wave state's radius also calculable

Output

- Value obtained for r_{0} implies $\left(\left\langle\mathrm{rE}^{2}\right\rangle+\left\langle\mathrm{re}_{\mathrm{E}}, \mathrm{Be} 10^{2}\right\rangle\right)^{1 / 2}=2.40 \mathrm{fm}$ at $\mathrm{LO}, 2.43 \mathrm{fm}$ at NLO
- Experimental result $\left\langle\text { }_{B e+11^{2}}\right\rangle^{1 / 2}=2.463(16) \mathrm{fm}$
- $r_{1}=-0.66 \pm 0.29 \mathrm{fm}^{-1}$ implies $\mathrm{a}_{1}=374 \pm 150 \mathrm{fm}^{3}$
- Information on P-wave interactions from dissociation, but only at NLO
- P-wave state's radius also calculable
- Universal correlation:

$$
\mathrm{B}(\mathrm{E} 1)=\frac{2 e^{2} Q_{c}^{2}}{15 \pi}\left\langle r_{E}^{2}\right\rangle^{(\pi)} x\left[\frac{1+2 x}{(1+x)^{2}}\right]^{2} ; \quad x=\gamma_{1} / \gamma_{0}
$$

Conclusions

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state
- Beryllium-11: one-neutron halo, shallow S- and P-wave state

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state
- Beryllium-11: one-neutron halo, shallow S- and P-wave state
- ${ }^{11} \mathrm{Be}$ has big $\mathrm{B}(\mathrm{E} 1)$ strength, can be hard to calculate in ab initio methods because of extended nature of p-wave state. Here controlled by r_{1}.
c.f. Rupak \& Higa arXiv:1101.0207

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state
- Beryllium-11: one-neutron halo, shallow S- and P-wave state
- ${ }^{11} \mathrm{Be}$ has big $\mathrm{B}(\mathrm{E} 1)$ strength, can be hard to calculate in ab initio methods because of extended nature of p-wave state. Here controlled by r_{1}.
c.f. Rupak \& Higa arXiv: 1101.0207
- NLO in ${ }^{11} \mathrm{Be}$: fix A_{0} from dissociation to continuum, predict radii, extract a_{1}

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state
- Beryllium-11: one-neutron halo, shallow S- and P-wave state
- ${ }^{11} \mathrm{Be}$ has big $\mathrm{B}(\mathrm{E} 1)$ strength, can be hard to calculate in ab initio methods because of extended nature of p-wave state. Here controlled by r_{1}.
c.f. Rupak \& Higa arXiv: 1101.0207
- NLO in ${ }^{11} \mathrm{Be}$: fix A_{0} from dissociation to continuum, predict radii, extract a_{1}
- Correlations between low-energy observables

Conclusions

- Halo EFT provides a systematic way to organize observables in halo nuclei in an expansion in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$
- Carbon-19: one-neutron halo, shallow S-wave state
- Beryllium-11: one-neutron halo, shallow S- and P-wave state
- ${ }^{11}$ Be has big $\mathrm{B}(\mathrm{E} 1)$ strength, can be hard to calculate in ab initio methods because of extended nature of p-wave state. Here controlled by r_{1}.
c.f. Rupak \& Higa arXiv: 1101.0207
- NLO in ${ }^{11}$ Be: fix A_{0} from dissociation to continuum, predict radii, extract a_{1}
- Correlations between low-energy observables
- Other one- (and two-?) neutron (?and proton) halos await: "universality".

