Nuclear physics from lattice effective field theory

Dean Lee (NC State)

work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich)

Strong interactions: From methods to structures Bad Honnef, February 12-16, 2011

Deutsche Forschungsgemeinschaft

Outline

Chiral effective field theory for nucleons Lattice effective field theory Lattice interactions and scattering data Three-nucleon forces Isospin breaking and Coulomb interaction Euclidean time projection and auxiliary fields Ground states for helium-4, beryllium-8, carbon-12 Carbon-12 spectrum and the Hoyle state Summary and future directions

Chiral EFT for low-energy nucleons

Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3

Construct the effective potential order by order

Lattice EFT for nucleons

Lattice interactions

Leading order on the lattice

Next-to-leading order on the lattice

Computational strategy

<u>Non-perturbative – Monte Carlo</u>

LO

"Improved LO"

Perturbative corrections

LO₁: Pure contact interactions

$$\mathcal{A}(V_{\mathrm{LO}_1}) = C + C_I \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \mathcal{A}(V^{\mathrm{OPEP}})$$

LO₂: Gaussian smearing $\mathcal{A}(V_{\text{LO}_2}) = Cf(\vec{q}^{\ 2}) + C_I f(\vec{q}^{\ 2}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \mathcal{A}(V^{\text{OPEP}})$

LO₃: Gaussian smearing only in even partial waves

$$\mathcal{A}(V_{\text{LO}_3}) = C_{S=0,I=1} f(\vec{q}^{\ 2}) \left(\frac{1}{4} - \frac{1}{4}\vec{\sigma}_1 \cdot \vec{\sigma}_2\right) \left(\frac{3}{4} + \frac{1}{4}\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2\right) + C_{S=1,I=0} f(\vec{q}^{\ 2}) \left(\frac{3}{4} + \frac{1}{4}\vec{\sigma}_1 \cdot \vec{\sigma}_2\right) \left(\frac{1}{4} - \frac{1}{4}\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2\right) + \mathcal{A}(V^{\text{OPEP}})$$

L

Lüscher's finite-volume formula

Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

Two-particle energy levels near threshold in a periodic cube related to phase shifts

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta), \qquad \eta = \left(\frac{Lp}{2\pi}\right)^2$$
$$S(\eta) = \lim_{\Lambda \to \infty} \left[\sum_{\vec{n}} \frac{\theta(\Lambda^2 - \vec{n}^2)}{\vec{n}^2 - \eta} - 4\pi\Lambda \right]$$

Not so useful for higher total spin and partial wave mixing

L

L

Physical scattering data

Unknown operator coefficients

Spherical wall method

Borasoy, Epelbaum, Krebs, D.L., Meißner, EPJA 34 (2007) 185

Spherical wall imposed in the center of mass frame

Representation	J_z	Example	
A_1	$0 \operatorname{mod} 4$	$Y_{0,0}$	
T_1	$0, 1, 3 \operatorname{mod} 4$	$\{Y_{1,0},Y_{1,1},Y_{1,-1}\}$	
E	$0,2 \operatorname{mod} 4$	$\left\{Y_{2,0}, \frac{Y_{2,-2}+Y_{2,2}}{\sqrt{2}}\right\}$	
T_2	$1,2,3 \operatorname{mod} 4$	$\left\{Y_{2,1}, \frac{Y_{2,-2} - Y_{2,2}}{\sqrt{2}}, Y_{2,-1}\right\}$	
A_2	$2 \operatorname{mod} 4$	$\frac{Y_{3,2} - Y_{3,-2}}{\sqrt{2}}$	

Energy levels with hard spherical wall

 $R_{\text{wall}} = 10a$ a = 1.97 fm

Energy shift from free-particle values gives the phase shift

Nucleon-nucleon phase shifts

Three-nucleon forces

Two unknown coefficients at NNLO from three-nucleon forces. Determine c_D and c_E using ³H and ⁴He binding energies

Isospin breaking and Coulomb interaction

Isospin-breaking and power counting [*Friar*, *van Kolck*, *PRC* 60 (1999) 034006; Walzl, Meißner, Epelbaum NPA 693 (2001) 663; Friar, van Kolck, Payne, Coon, PRC 68 (2003) 024003; Epelbaum, Meißner, PRC72 (2005) 044001...]

Pion mass difference

Coulomb potential

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010 Epelbaum, Krebs, D.L, Meißner, EPJA 45 (2010) 335

Triton and Helium-3

Euclidean time projection

Let H be the Hamiltonian for a quantum system. We don't know the energies and energy eigenstates, but label them as

 $H |\psi_n\rangle = E_n |\psi_n\rangle$ $E_0 < E_1 \le E_2 \le \cdots$

Convenient to work with exponentials of the Hamiltonian

$$\exp(-Ht) |\psi_n\rangle = \exp(-E_n t) |\psi_n\rangle$$

If initial state overlap is nonzero, then the ground state dominates as Euclidean time goes to infinity

$$\exp(-Ht) |\phi\rangle \rightarrow \exp(-E_0 t) |\psi_0\rangle \langle\psi_0| \phi\rangle$$

Auxiliary fields

We can write exponentials of the interaction using a Gaussian integral identity

$$\exp\left[-\frac{C}{2}(N^{\dagger}N)^{2}\right] \qquad \left| \left(N^{\dagger}N\right)^{2}\right]$$
$$= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds \exp\left[-\frac{1}{2}s^{2} + \sqrt{-C}s(N^{\dagger}N)\right] \qquad \right| \qquad \left| \sum SN^{\dagger}N\right|$$

We remove the interaction between nucleons and replace it with the interactions of each nucleon with a background field.

Take any initial state with the desired quantum numbers and which is an antisymmetric product of *A* single nucleon states (i.e., a Slater determinant)

$$|\psi_{\text{init}}\rangle = |1\rangle \wedge |2\rangle \wedge \cdots \wedge |A\rangle$$

For any configuration of the auxiliary and pion fields,

$$\langle \psi_{\text{init}} | \exp \left[-H(s, s_I, \pi_I) t \right] | \psi_{\text{init}} \rangle = \det \mathbf{G}(s, s_I, \pi_I)$$
$$\mathbf{G}_{ij}(s, s_I, \pi_I) = \langle i | \exp \left[-H(s, s_I, \pi_I) t \right] | j \rangle$$

For *A* nucleons, the matrix is *A* by *A*. We use Monte Carlo to integrate over all possible configurations of the auxiliary and pion fields.

Schematic of calculations

$$= M_{\rm LO} = M_{\rm SU(4)} = O_{\rm observable}$$
$$= M_{\rm NLO} = M_{\rm NNLO}$$

$$Z_{n_t,\text{NLO}} = \langle \psi_{\text{init}} | \boxed{\qquad} \qquad \boxed{\qquad} \\ Z_{n_t,\text{NLO}}^{\langle O \rangle} = \langle \psi_{\text{init}} | \boxed{\qquad} \\ \boxed{\qquad} \\ \langle O \rangle_{0,\text{NLO}} = \lim_{n_t \to \infty} Z_{n_t,\text{NLO}}^{\langle O \rangle} / Z_{n_t,\text{NLO}}$$

Ground state of Helium-4

 $L = 9.9 \,\mathrm{fm}$

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010; EPJA 45 (2010) 335; arXiv:1101.2547

Ground state of Helium-4

 $L = 9.9 \,\mathrm{fm}$

$LO(O(Q^0))$	-24.8(2) MeV		
NLO $(O(Q^2))$	-24.7(2) MeV		
$NLO + IB + EM(O(Q^2))$	-23.8(2) MeV		
NNLO $(O(Q^3))$	-28.4(3) MeV		
Experiment	-28.3 MeV		

Ground state of Beryllium-8

Epelbaum, Krebs, D.L, Meißner, arXiv:1101.2547

Ground state of Beryllium-8

$LO(O(Q^0))$	-60.9(7) MeV	
NLO $(O(Q^2))$	-60(2) MeV	
$NLO + IB + EM(O(Q^2))$	-55(2) MeV	
NNLO $(O(Q^3))$	-58(2) MeV	
Experiment	-56.5 MeV	

Ground state of Carbon-12

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010; EPJA 45 (2010) 335; arXiv:1101.2547

Ground state of Carbon-12

$LO(O(Q^0))$	-110(2) MeV		
NLO $(O(Q^2))$	-93(3) MeV		
$NLO + IB + EM(O(Q^2))$	-85(3) MeV		
NNLO $(O(Q^3))$	-91(3) MeV		
Experiment	-92.2 MeV		

Carbon-12 spectrum and the Hoyle state

Excited state energy gaps

Higher-order corrections

Excited state spectrum of carbon-12

	0^+_2	$2_1^+, J_z = 0$	$2_1^+, J_z = 2$
LO $(O(Q^0))$	-94(2) MeV	-92(2) MeV	-89(2) MeV
NLO $(O(Q^2))$	-82(3) MeV	-87(3) MeV	-85(2) MeV
NLO + IB + EM $(O(Q^2))$	-74(3) MeV	-80(3) MeV	-78(3) MeV
NNLO $(O(Q^3))$	-85(3) MeV	-88(3) MeV	-90(4) MeV
Experiment	-84.51 MeV	-87.72 MeV	

First ab initio calculation of the Hoyle state

Epelbaum, Krebs, D.L, Meißner, arXiv:1101.2547

Proton-proton radial distribution function at leading order

Summary and future directions

Lattice effective field theory is a relatively new and promising tool that combines the framework of effective field theory and computational lattice methods.

Many topics to explore...

Electromagnetic transitions for carbon-12; spectrum of beryllium-8; alpha clustering in nuclei; three-dimensional profile of the Hoyle state; nitrogen-14; oxygen-16; beryllium-10; transition from S-wave to P-wave pairing in superfluid neutron matter; compressibility of nuclei, weak matrix elements; configurations for general public use; etc.

Extra slides

Initial state for carbon-12

For the ground state calculation of carbon-12 the initial state is a Slater determinant of 12 single-nucleon standing waves in the cubic periodic box.

$$a_{0,0} = a_{\uparrow,p}, a_{0,1} = a_{\uparrow,n}$$

 $a_{1,0} = a_{\downarrow,p}, a_{1,1} = a_{\downarrow,n}$

 $\begin{array}{l} \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_1 \right\rangle \propto \delta_{i,0} \delta_{j,0}, & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_2 \right\rangle \propto \delta_{i,0} \delta_{j,1}, \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_3 \right\rangle \propto \delta_{i,1} \delta_{j,0}, & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_4 \right\rangle \propto \delta_{i,1} \delta_{j,1} \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_5 \right\rangle \propto \delta_{i,0} \delta_{j,0} \cos\left(\frac{2n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_6 \right\rangle \propto \delta_{i,0} \delta_{j,1} \cos\left(\frac{2n_z \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_7 \right\rangle \propto \delta_{i,1} \delta_{j,0} \cos\left(\frac{2n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_8 \right\rangle \propto \delta_{i,1} \delta_{j,1} \cos\left(\frac{2n_z \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_9 \right\rangle \propto \delta_{i,0} \delta_{j,0} \sin\left(\frac{2n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_{10} \right\rangle \propto \delta_{i,0} \delta_{j,1} \sin\left(\frac{2n_z \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_{11} \right\rangle \propto \delta_{i,1} \delta_{j,0} \sin\left(\frac{2n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \psi_{12} \right\rangle \propto \delta_{i,1} \delta_{j,1} \sin\left(\frac{2n_z \pi}{L}\right) \end{array}$

To measure the lowest spin-2 state and Hoyle state (first excited spin-0) we also consider 12 other single-nucleon standing waves

$$\begin{array}{l} \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_1 \right\rangle \propto \delta_{i,0} \delta_{j,0} \cos\left(\frac{2n_x \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_2 \right\rangle \propto \delta_{i,0} \delta_{j,1} \cos\left(\frac{2n_x \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_3 \right\rangle \propto \delta_{i,0} \delta_{j,0} \sin\left(\frac{2n_x \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_4 \right\rangle \propto \delta_{i,0} \delta_{j,1} \sin\left(\frac{2n_x \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_5 \right\rangle \propto \delta_{i,0} \delta_{j,0} \cos\left(\frac{2n_y \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_6 \right\rangle \propto \delta_{i,0} \delta_{j,1} \cos\left(\frac{2n_y \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_7 \right\rangle \propto \delta_{i,0} \delta_{j,0} \sin\left(\frac{2n_y \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_8 \right\rangle \propto \delta_{i,0} \delta_{j,1} \sin\left(\frac{2n_y \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_9 \right\rangle \propto \delta_{i,0} \delta_{j,0} \cos\left(\frac{4n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_{10} \right\rangle \propto \delta_{i,0} \delta_{j,1} \cos\left(\frac{4n_z \pi}{L}\right) \\ \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_{11} \right\rangle \propto \delta_{i,0} \delta_{j,0} \sin\left(\frac{4n_z \pi}{L}\right), & \left\langle 0 \right| a_{i,j}(\vec{n}) \left| \phi_{12} \right\rangle \propto \delta_{i,0} \delta_{j,1} \sin\left(\frac{4n_z \pi}{L}\right) \end{array}$$

From these 24 single-nucleon standing waves we construct 7 initial states.

$$\begin{split} |\Psi_{1}\rangle \propto \bigwedge_{k=1,2,\cdots,12} |\psi_{k}\rangle \\ |\Psi_{2}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{1}\rangle \wedge |\phi_{2}\rangle & |\Psi_{3}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{3}\rangle \wedge |\phi_{4}\rangle \\ |\Psi_{4}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{5}\rangle \wedge |\phi_{6}\rangle & |\Psi_{5}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{7}\rangle \wedge |\phi_{8}\rangle \\ |\Psi_{6}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{9}\rangle \wedge |\phi_{10}\rangle & |\Psi_{7}\rangle \propto \bigwedge_{k=3,4,\cdots,12} |\psi_{k}\rangle \wedge |\phi_{11}\rangle \wedge |\phi_{12}\rangle \end{split}$$

From these 7 initial states we make 4 linear combinations with total momentum zero and even parity. Three of these have $J_z = 0$ and one has $J_z = 2$.

Relative contribution of omitted operators

Approximate universality

