Nuclear physics from
 lattice effective field theory

Dean Lee (NC State)

work done in collaboration with Evgeny Epelbaum (Bochum)

Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich)

Strong interactions: From methods to structures Bad Honnef, February 12-16, 2011

Outline

Chiral effective field theory for nucleons
Lattice effective field theory
Lattice interactions and scattering data
Three-nucleon forces

Isospin breaking and Coulomb interaction
Euclidean time projection and auxiliary fields
Ground states for helium-4, beryllium-8, carbon-12
Carbon-12 spectrum and the Hoyle state
Summary and future directions

Chiral EFT for low-energy nucleons

Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3

Construct the effective potential order by order

Nuclear Scattering Data

Effective Field Theory

Ordonez et al. '94; Friar \& Coon '94;
Kaiser et al. '97; Epelbaum et al. '98, '03;
Kaiser '99- '01; Higa et al. '03;
Entem \& Machleidt '01, '03...

Lattice EFT for nucleons

Lattice interactions

Leading order on the lattice

Next-to-leading order on the lattice

$\vec{\nabla}_{1} \cdot \vec{\nabla}_{2} \quad\left(\vec{\sigma}_{1} \cdot \vec{\nabla}_{1}\right)\left(\vec{\sigma}_{2} \cdot \vec{\nabla}_{2}\right)$

Computational strategy

Non-perturbative - Monte Carlo
Perturbative corrections

"Improved LO"

\bullet
LO_{1} : Pure contact interactions

$$
\mathcal{A}\left(V_{\mathrm{LO}_{1}}\right)=C+C_{I} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\mathcal{A}\left(V^{\mathrm{OPEP}}\right)
$$

LO_{2} : Gaussian smearing

$$
\mathcal{A}\left(V_{\mathrm{LO}_{2}}\right)=C f\left(\vec{q}^{2}\right)+C_{I} f\left(\vec{q}^{2}\right) \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\mathcal{A}\left(V^{\mathrm{OPEP}}\right)
$$

LO_{3} : Gaussian smearing only in even partial waves

$$
\begin{aligned}
\mathcal{A}\left(V_{\mathrm{LO}_{3}}\right)= & C_{S=0, I=1} f\left(\vec{q}^{2}\right)\left(\frac{1}{4}-\frac{1}{4} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)\left(\frac{3}{4}+\frac{1}{4} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right) \\
& +C_{S=1, I=0} f\left(\vec{q}^{2}\right)\left(\frac{3}{4}+\frac{1}{4} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)\left(\frac{1}{4}-\frac{1}{4} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right) \\
& +\mathcal{A}\left(V^{\mathrm{OPEP}}\right)
\end{aligned}
$$

Physical scattering data

Unknown operator coefficients

Lüscher's finite-volume formula

Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531
Two-particle energy levels near threshold in a periodic cube related to phase shifts

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2}
$$

$$
S(\eta)=\lim _{\Lambda \rightarrow \infty}\left[\sum_{\vec{n}} \frac{\theta\left(\Lambda^{2}-\vec{n}^{2}\right)}{\vec{n}^{2}-\eta}-4 \pi \Lambda\right]
$$

Not so useful for higher total spin and partial wave mixing

Physical scattering data

Unknown operator coefficients

Representation	J_{z}	Example
A_{1}	$0 \bmod 4$	$Y_{0,0}$
T_{1}	$0,1,3 \bmod 4$	$\left\{Y_{1,0}, Y_{1,1}, Y_{1,-1}\right\}$
E	$0,2 \bmod 4$	$\left\{Y_{2,0}, \frac{Y_{2,-2}+Y_{2,2}}{\sqrt{2}}\right\}$
T_{2}	$1,2,3 \bmod 4$	$\left\{Y_{2,1}, \frac{Y_{2,-2}-Y_{2,2}}{\sqrt{2}}, Y_{2,-1}\right\}$
A_{2}	$2 \bmod 4$	$\frac{Y_{3,2}-Y_{3,-2}}{\sqrt{2}}$

Energy levels with hard spherical wall

$$
\begin{aligned}
& R_{\text {wall }}=10 a \\
& a=1.97 \mathrm{fm}
\end{aligned}
$$

Energy shift from free-particle values gives the phase shift

Nucleon-nucleon phase shifts

$\underline{\mathrm{LO}}_{3}: \mathrm{S}$ waves $\quad a=1.97 \mathrm{fm}$

$\mathrm{LO}_{3}: ~ \mathrm{P}$ waves
$a=1.97 \mathrm{fm}$

Three-nucleon forces

Two unknown coefficients at NNLO from three-nucleon forces. Determine c_{D} and c_{E} using ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ binding energies

Isospin breaking and Coulomb interaction

Isospin-breaking and power counting [Friar, van Kolck, PRC 60 (1999) 034006; Walzl, Meißner, Epelbaum NPA 693 (2001) 663; Friar, van Kolck, Payne, Coon, PRC 68 (2003) 024003; Epelbaum, Meißner, PRC72 (2005) 044001...]

Pion mass difference

$$
m_{\pi_{0}} \neq m_{\pi_{ \pm}}
$$

Coulomb potential

Charge symmetry breaking
Charge independence breaking

Neutron-proton

Proton-proton

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010
Epelbaum, Krebs, D.L, Meißner, EPJA 45 (2010) 335

Triton and Helium-3

Euclidean time projection

Let H be the Hamiltonian for a quantum system. We don't know the energies and energy eigenstates, but label them as

$$
\begin{gathered}
H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \\
E_{0}<E_{1} \leq E_{2} \leq \cdots
\end{gathered}
$$

Convenient to work with exponentials of the Hamiltonian

$$
\exp (-H t)\left|\psi_{n}\right\rangle=\exp \left(-E_{n} t\right)\left|\psi_{n}\right\rangle
$$

If initial state overlap is nonzero, then the ground state dominates as Euclidean time goes to infinity

$$
\exp (-H t)|\phi\rangle \rightarrow \exp \left(-E_{0} t\right)\left|\psi_{0}\right\rangle\left\langle\psi_{0} \mid \phi\right\rangle
$$

Auxiliary fields

We can write exponentials of the interaction using a Gaussian integral identity

$$
\begin{gathered}
\exp \left[-\frac{C}{2}\left(N^{\dagger} N\right)^{2}\right] \quad \nless\left(N^{\dagger} N\right)^{2} \\
\left.=\sqrt{\frac{1}{2 \pi}} \int_{-\infty}^{\infty} d s \exp \left[-\frac{1}{2} s^{2}+\sqrt{-C} s\left(N^{\dagger} N\right)\right] \quad\right\rangle s N^{\dagger} N
\end{gathered}
$$

We remove the interaction between nucleons and replace it with the interactions of each nucleon with a background field.

Take any initial state with the desired quantum numbers and which is an antisymmetric product of A single nucleon states (i.e., a Slater determinant)

$$
\left|\psi_{\text {init }}\right\rangle=|1\rangle \wedge|2\rangle \wedge \cdots \wedge|A\rangle
$$

For any configuration of the auxiliary and pion fields,

$$
\begin{gathered}
\left\langle\psi_{\text {init }}\right| \exp \left[-H\left(s, s_{I}, \pi_{I}\right) t\right]\left|\psi_{\text {init }}\right\rangle=\operatorname{det} \mathbf{G}\left(s, s_{I}, \pi_{I}\right) \\
\mathbf{G}_{i j}\left(s, s_{I}, \pi_{I}\right)=\langle i| \exp \left[-H\left(s, s_{I}, \pi_{I}\right) t\right]|j\rangle
\end{gathered}
$$

For A nucleons, the matrix is A by A. We use Monte Carlo to integrate over all possible configurations of the auxiliary and pion fields.

Schematic of calculations

$$
\begin{gathered}
\square=M_{\mathrm{LO}} \quad \llbracket=M_{S U(4)} \quad \|=O_{\text {observable }} \\
\square=M_{\mathrm{NLO}} \quad \text { 目 }=M_{\mathrm{NNLO}}
\end{gathered}
$$

Hybrid Monte Carlo sampling

$$
\begin{aligned}
& e^{-E_{0, \mathrm{LO}} a_{t}}=\lim _{n_{t} \rightarrow \infty} Z_{n_{t}+1, \mathrm{LO}} / Z_{n_{t}, \mathrm{LO}} \\
& \langle O\rangle_{0, \mathrm{LO}}=\lim _{n_{t} \rightarrow \infty} Z_{n_{t}, \mathrm{LO}}^{\langle O\rangle} / Z_{n_{t}, \mathrm{LO}}
\end{aligned}
$$

$$
\begin{aligned}
& \langle O\rangle_{0, \mathrm{NLO}}=\lim _{n_{t} \rightarrow \infty} Z_{n_{t}, \mathrm{NLO}}^{\langle O\rangle} / Z_{n_{t}, \mathrm{NLO}}
\end{aligned}
$$

Ground state of Helium-4

$$
L=9.9 \mathrm{fm}
$$

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010; EPJA 45 (2010) 335; arXiv:1101.2547

Ground state of Helium-4

$$
L=9.9 \mathrm{fm}
$$

LO $\left(O\left(Q^{0}\right)\right)$	$-24.8(2) \mathrm{MeV}$
$\mathrm{NLO}\left(O\left(Q^{2}\right)\right)$	$-24.7(2) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}\left(O\left(Q^{2}\right)\right)$	$-23.8(2) \mathrm{MeV}$
NNLO $\left(O\left(Q^{3}\right)\right)$	$-28.4(3) \mathrm{MeV}$
Experiment	-28.3 MeV

Ground state of Beryllium-8

$$
L=11.8 \mathrm{fm}
$$

(A)

Epelbaum, Krebs, D.L, Meißner, arXiv:1101.2547

Ground state of Beryllium-8

$$
L=11.8 \mathrm{fm}
$$

LO $\left(O\left(Q^{0}\right)\right)$	$-60.9(7) \mathrm{MeV}$
$\mathrm{NLO}\left(O\left(Q^{2}\right)\right)$	$-60(2) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}\left(O\left(Q^{2}\right)\right)$	$-55(2) \mathrm{MeV}$
NNLO $\left(O\left(Q^{3}\right)\right)$	$-58(2) \mathrm{MeV}$
Experiment	-56.5 MeV

Ground state of Carbon-12

$$
L=11.8 \mathrm{fm}
$$

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010; EPJA 45 (2010) 335; arXiv:1101.2547

Ground state of Carbon-12

$$
L=11.8 \mathrm{fm}
$$

LO $\left(O\left(Q^{0}\right)\right)$	$-110(2) \mathrm{MeV}$
$\mathrm{NLO}\left(O\left(Q^{2}\right)\right)$	$-93(3) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}\left(O\left(Q^{2}\right)\right)$	$-85(3) \mathrm{MeV}$
NNLO $\left(O\left(Q^{3}\right)\right)$	$-91(3) \mathrm{MeV}$
Experiment	-92.2 MeV

Carbon-12 spectrum and the Hoyle state

Excited state energy gaps

Higher-order corrections

Excited state spectrum of carbon-12

	0_{2}^{+}	$2_{1}^{+}, J_{z}=0$	$2_{1}^{+}, J_{z}=2$
LO $\left(O\left(Q^{0}\right)\right)$	$-94(2) \mathrm{MeV}$	$-92(2) \mathrm{MeV}$	$-89(2) \mathrm{MeV}$
$\mathrm{NLO}\left(O\left(Q^{2}\right)\right)$	$-82(3) \mathrm{MeV}$	$-87(3) \mathrm{MeV}$	$-85(2) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}\left(O\left(Q^{2}\right)\right)$	$-74(3) \mathrm{MeV}$	$-80(3) \mathrm{MeV}$	$-78(3) \mathrm{MeV}$
NNLO $\left(O\left(Q^{3}\right)\right)$	$-85(3) \mathrm{MeV}$	$-88(3) \mathrm{MeV}$	$-90(4) \mathrm{MeV}$
Experiment	-84.51 MeV	$-87.72 \mathrm{MeV}$	

First $a b$ initio calculation of the Hoyle state
Epelbaum, Krebs, D.L, Meißner, arXiv:1101.2547

Proton-proton radial distribution function at leading order

Summary and future directions

Lattice effective field theory is a relatively new and promising tool that combines the framework of effective field theory and computational lattice methods.

Many topics to explore...
Electromagnetic transitions for carbon-12; spectrum of beryllium-8; alpha clustering in nuclei; three-dimensional profile of the Hoyle state; nitrogen-14; oxygen-16; beryllium-10; transition from S -wave to P -wave pairing in superfluid neutron matter; compressibility of nuclei, weak matrix elements; configurations for general public use; etc.

Extra slides

Initial state for carbon-12

For the ground state calculation of carbon-12 the initial state is a Slater determinant of 12 single-nucleon standing waves in the cubic periodic box.

$$
\left.\begin{array}{rl}
a_{0,0}=a_{\uparrow, p}, a_{0,1}=a_{\uparrow, n} \\
a_{1,0}=a_{\downarrow, p}, a_{1,1}=a_{\downarrow, n} \\
\langle 0| a_{i, j}(\vec{n})\left|\psi_{1}\right\rangle \propto \delta_{i, 0} \delta_{j, 0}, \quad\langle 0| a_{i, j}(\vec{n})\left|\psi_{2}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \\
\langle 0| a_{i, j}(\vec{n})\left|\psi_{3}\right\rangle \propto \delta_{i, 1} \delta_{j, 0}, \quad\langle 0| a_{i, j}(\vec{n})\left|\psi_{4}\right\rangle \propto \delta_{i, 1} \delta_{j, 1} \\
\langle 0| a_{i, j}(\vec{n})\left|\psi_{5}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \cos \left(\frac{2 n_{z} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\psi_{6}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \cos \left(\frac{2 n_{z} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\psi_{7}\right\rangle & \propto \delta_{i, 1} \delta_{j, 0} \cos \left(\frac{2 n_{z} \pi}{L}\right),
\end{array} \quad\langle 0| a_{i, j}(\vec{n})\left|\psi_{8}\right\rangle \propto \delta_{i, 1} \delta_{j, 1} \cos \left(\frac{2 n_{z} \pi}{L}\right)\right] .
$$

To measure the lowest spin-2 state and Hoyle state (first excited spin-0) we also consider 12 other single-nucleon standing waves

$$
\begin{array}{rlrl}
\langle 0| a_{i, j}(\vec{n})\left|\phi_{1}\right\rangle & \propto \delta_{i, 0} \delta_{j, 0} \cos \left(\frac{2 n_{x} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{2}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \cos \left(\frac{2 n_{x} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\phi_{3}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \sin \left(\frac{2 n_{x} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{4}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \sin \left(\frac{2 n_{x} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\phi_{5}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \cos \left(\frac{2 n_{y} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{6}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \cos \left(\frac{2 n_{y} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\phi_{7}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \sin \left(\frac{2 n_{y} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{8}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \sin \left(\frac{2 n_{y} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\phi_{9}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \cos \left(\frac{4 n_{z} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{10}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \cos \left(\frac{4 n_{z} \pi}{L}\right) \\
\langle 0| a_{i, j}(\vec{n})\left|\phi_{11}\right\rangle \propto \delta_{i, 0} \delta_{j, 0} \sin \left(\frac{4 n_{z} \pi}{L}\right), & \langle 0| a_{i, j}(\vec{n})\left|\phi_{12}\right\rangle \propto \delta_{i, 0} \delta_{j, 1} \sin \left(\frac{4 n_{z} \pi}{L}\right)
\end{array}
$$

From these 24 single-nucleon standing waves we construct 7 initial states.

$$
\begin{aligned}
\left|\Psi_{1}\right\rangle \propto \bigwedge_{k=1,2, \cdots, 12}\left|\psi_{k}\right\rangle \\
\left|\Psi_{2}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{1}\right\rangle \wedge\left|\phi_{2}\right\rangle \quad\left|\Psi_{3}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{3}\right\rangle \wedge\left|\phi_{4}\right\rangle \\
\left|\Psi_{4}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{5}\right\rangle \wedge\left|\phi_{6}\right\rangle \quad\left|\Psi_{5}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{7}\right\rangle \wedge\left|\phi_{8}\right\rangle \\
\left|\Psi_{6}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{9}\right\rangle \wedge\left|\phi_{10}\right\rangle \quad\left|\Psi_{7}\right\rangle \propto \bigwedge_{k=3,4, \cdots, 12}\left|\psi_{k}\right\rangle \wedge\left|\phi_{11}\right\rangle \wedge\left|\phi_{12}\right\rangle
\end{aligned}
$$

From these 7 initial states we make 4 linear combinations with total momentum zero and even parity. Three of these have $J_{z}=0$ and one has $J_{z}=2$.

Relative contribution of omitted operators

