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OUTLINE OF THE TALK

• Introduction and physical motivation

• General theory for Efimovian N -mers

• The 3 + 1 fermionic problem

• Comparison to existing predictions



INTRODUCTION



TWO-BODY PROBLEM

• For long-range interaction, infinite number of bound states
may exist, with accumulation point at E = 0. Cf. hy-
drogen atom:

En ∝ −
1

n2
, n ∈ N

∗

• For short-range interaction, finite number of bound states.
Cf. van der Waals interaction between two atoms.

• Can the situation change for more than two atoms ?

In all what follows, s-wave short-range interaction among
ultracold atoms with infinite scattering length |a| = ∞.



THREE-BODY PROBLEM

• Efimov (1971): Three bosons, 1/a = 0, no dimer state.
Then there exists an infinite number of trimer states,
E = 0 accumulation point, geometric spectrum:

E
(3)
n ∼

n→+∞
E

(3)
ref e

−2πn/|s3|

where purely imaginary s3 = i×1.00624 solves transcen-

dental equation, E
(3)
ref depends on microscopic details.

• Efimov (1973): Solution for three arbitrary particles,
1/a = 0. E.g. Efimov trimers for two fermions (masse
M , same spin state) and one impurity (masse m) if
(Petrov, 2003)

α ≡ M

m
> αc(2; 1) ≃ 13.607

with s3(α) ∈ iR+∗ from known transcendental equation.



ARE THERE EFIMOVIAN TETRAMERS ?

E
(4)
n ∼

n→+∞
E

(4)
ref e

−2πn/|s4| ?

Negative results:

• Amado, Greenwood (1973): “There is No Efimov ef-
fect for Four or More Particles”. Explanation: Case of
bosons, there exist trimers, tetramers decay.

• Hammer, Platter (2007), von Stecher, D’Incao, Greene
(2009), Deltuva (2010): The four-boson problem (here

1/a = 0) depends only on E
(3)
ref , no E

(4)
ref to add.

• Key point: N = 3 Efimov effect breaks separability in
hyperspherical coordinates for N = 4.

Idea: Consider three fermions (M) and one impurity (m).



GENERAL THEORY FOR EFIMOVIAN N -MERS (N ≥ 3)



THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

• Interactions are replaced by contact conditions on the
wavefunction.

• For rij → 0 with fixed ij-centroid ~Cij = (mi~ri+mj~rj)/(mi+
mj) different from ~rk, k 6= i, j:

ψ(~r1, . . . , ~rN) =

(

1

rij
− 1

a

)

Aij[ ~Cij; (~rk)k 6=i,j] + O(rij)

• Elsewhere, non interacting Schrödinger equation

Eψ =
N∑

i=1

− ~
2

2mi
∆~ri

ψ

with correct exchange symmetry

• Scale invariance: ψλ(~r1, . . . , ~rN) ≡ ψ(~r1/λ, . . . , ~rN/λ)
is another solution with eigenenergy E/λ2.



SEPARABILITY IN HYPERSPHERICAL COORDINATES
Werner, Castin (2006):

• Use Jacobi coordinates to separate center of mass ~C

• Hyperspherical coordinates: (~r1, . . . , ~rN) ↔ (~C,R, ~Ω )

with 3N − 4 hyperangles ~Ω and the hyperradius such
that muR

2 =
∑N
i=1mi(~ri − ~C )2

• Hamiltonian is clearly separable:

H = −
~
2

2mu

[

∂2
R +

3N − 4

R
∂R +

1

R2
∆~Ω

]

• Do the contact conditions preserve separability ? Yes
for E = 0, due to scaling invariance: ψ0 = Rνφ(~Ω).

Solves ∆~Ω
φ(~Ω) = −

[

s2N −
(

3N−5
2

)2
]

φ(~Ω) with contact

conditions, s2N ∈ R belongs to a discrete set, and ν =

sN − 3N−5
2 .



• For arbitrary energy, Ansatz with E = 0 hyperrangular
part

ψ = F (R)R−(3N−5)/2φ(~Ω)

obeys contact conditions [R2 = R2(rij = 0) + O(r2ij)].

• Schrödinger equation for a fictitious particle in 2D:

EF (R) = − ~
2

2mu

[

F ′′(R) +
1

R
F ′(R)

]

+
~
2s2N

2muR2

• There exist Efimovian N -meres ⇐⇒ there exists s2N < 0

• Fall to the center, H not self-adjoint. Impose N -body
contact condition with new parameter q:

F (R) ∼
R→0

(qR)sN + (qR)−sN

Discrete scaling invariance λ2sN = 1, geometric spec-
trum.



CRUCIAL POINTS OF GENERAL THEORY

• To find N -body Efimov effect, one simply needs to cal-
culate the exponents sN , that is to solve the Wigner-
Bethe-Peierls model at zero energy:

ψ0(~r1, . . . , ~rN) = RsN−(3N−5)/2φ(~Ω)

• General theory OK if ∆~Ω
self-adjoint: no n-body Efimov

effect ∀n ≤ N − 1.



THE 3 + 1 FERMIONIC PROBLEM

(Castin, Mora, Pricoupenko, 2010)



INTEGRAL EQUATION

• Three fermions (mass M , same spin state) and one im-
purity (mass m)

• General theory OK for a mass ratio

α ≡ M

m
< αc(2; 1) ≃ 13.607

• Calculate E = 0 solution in momentum space. An inte-
gral equation for Fourier transform of Aij:

0 =

[
1 + 2α

(1 + α)2
(k2

1 + k2
2) +

2α

(1 + α)2
~k1 · ~k2

]1/2

D(~k1, ~k2)

+

∫
d3k3

2π2

D(~k1, ~k3) +D(~k3, ~k2)

k2
1 + k2

2 + k2
3 + 2α

1+α(~k1 · ~k2 + ~k1 · ~k3 + ~k2 · ~k3)

•D has to obey fermionic symmetry.



REDUCTION OF THE INTEGRAL EQUATION
Rotational invariance:

•D is the ml = 0 component of a spinor of spin l:

~D(~k1, ~k2) = tρ ~D(R~k1,R~k2)

• Clever choice of the rotation matrix R:

~D(~k1, ~k2) = tρ ~D[k1~ex, k2(cos θ~ex + sin θ~ey)]
︸ ︷︷ ︸

2l+1 unknown functions f (l)
ml

(k1,k2,θ)

Scaling invariance for E = 0:

f
(l)
ml

(k1, k2, θ) = (k2
1 + k2

2)
−(s4+7/2)/2(coshx)3/2Φ

(l)
ml

(x, θ)

with x = ln(k2/k1).

The integral equation gives M
(l)
s4 [~Φ(l)] = 0.

s4 allowed ⇐⇒ M
(l)
s4 has a zero eigenvalue



RESULTS

• Numerical exploration up to l = 10

• Four-body Efimov effect obtained for a single s4, in chan-
nel l = 1 with even parity:

D(~k1, ~k2) = ~ez ·
~k1 × ~k2

||~k1 × ~k2||
f

(1)
0 (k1, k2, θ)

in the interval of mass ratio

αc(3; 1) ≃ 13.384 < α < αc(2; 1) ≃ 13.607



NUMERICAL VALUES OF s4 ∈ iR
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EXPERIMENTAL ASPECTS

• Large scattering length with magnetic Feshbach reso-
nance (Grimm, 2006; Hulet, 2009)

• Radio-frequency spectroscopy of trimers (Jochim, 2010)

• Remaining issue: Narrow interval of mass ratio.

Solution 1: The right mixture

•
41Ca and 3He∗ have mass ratio α ≃ 13.58 ∈ [13.384, 13.607]

• A priori, |s4| ≃ 0.75 large enough to see two tetramer
states

•
41Ca has same radioactivity as 239Pu (half-life 105 years)

Solution 2: Mass tuning

•
40K and 3He∗ have slightly-off mass ratio α ≃ 13.25

• Use optical lattice to tune effective mass (Petrov, Shlyap-
nikov, 2007)



COMPARISON TO PREVIOUS WORKS



MINLOS’S THEOREM (1995)
Theorem: In the n + 1 fermionic problem, the Wigner-

Bethe-Peierls Hamiltonian is bounded from below if and

only if

(n− 1)
2α(1 + 1/α)3

π
√

1 + 2α

∫ asin α
1+α

0
dt t sin t < 1.

• We expect that “not bounded from below” is equivalent
to “with Efimov effect”.

• Case n = 3: αMinlos
c ≃ 5.29 totally differs from ours...

• Case α = 1: No stable unitary gas for n > 9...

• Weak point: Proof not included in Minlos’ paper.

• Recent proof: Teta, Finco (2010). But we have found a
hole in the proof.


