

Bringing Light into the Darkness — *About Dark Matter Scattering off Light Nuclei* In Collaboration with Jordy de Vries and Andreas Nogga

[arxiv:1704.01150]

13. July 2016 | **Christopher Körber** | IKP-3/IAS-4 | Seminar@TP2 — Ruhr-Universität Bochum *PhD Advisor:* **Tom Luu**

Dark Matter

- So far only Gravitational Evidence $r > 8.5 \,\mathrm{kpc}$

Rotation Curves: Milky Way

Newtonian prediction

$$v(r) \propto rac{1}{\sqrt{r}}$$

- Experimental observations $v(r) \propto r \Rightarrow \frac{M_{DM}}{M_M} \approx 20$

Cosmological ParametersACDM model

How to resolve this?

v(r)

- Assumption: Existence of DM particle candidate
- Connect experiments on fundamental scales to theories
 Beyond the Standard Model

The Next ~40 Minutes

Experiments on Fundamental Scale

nschaft

Direct Detection Bounds

From Theory to Experiment

meinschaft

A Dark-Matter EFT

Dark Matter Interactions

- From Quarks to Nucleons

Possible Dark Matter Interaction

• Scalar interaction of DM with quarks and gluons

$$\mathscr{L}_{DM}^{(QCD)} = \bar{\chi}\chi \left[\sum_{f=u,d,s} \bar{c}_f m_f \,\bar{q}_f q_f + \bar{c}_g \alpha_s G^a_{\mu\nu} G^{\mu\nu\,a} \right]$$

Propagation of Scales

- Effective chiral Lagrangian based on underlaying interactions
- Depends on chiral as well as lattice input (sigma term, mass splitting, ...)
- Gluon and strange quark structures can be grouped together (similar terms)

$$\mathscr{L}_{DM}^{(N\pi)} = \bar{\chi}\chi \left[c_q^{(ic)}\bar{N}N + c_q^{(iv)}\bar{N}\tau^3N + c_q^{(\pi)}\pi^2 + c_g^{(ic)}\bar{N}N + c_g^{(\pi)}\left((\partial_\mu\pi)^2 - 2m_\pi^2\pi^2\right) \right]$$

Effective Approaches

- M. Hoferichter, A. Schwenk, ... arXiv:1605.08043
- F. L. Fitzpatrick, W. Haxton, ... arXiv:1203.3542
- V. Cirigliano, M. L. Graesser, ... arXiv:1205.2695

Dark Matter Interactions

- From QCD to Chiral Lagrangian

Idea: Compare to existing framework of regular Chiral Perturbation Theory (ChPT)

 $\mathscr{L}_{DM}^{(QCD)} = \left(\bar{c}_u m_u \,\bar{\chi}\chi\right) \bar{u}u + \left(\bar{c}_d m_d \,\bar{\chi}\chi\right) \bar{d}d + \cdots$

• DM interaction as mass term $\chi_{\mathcal{M}} = 2B_0\mathcal{M} \mapsto 2B_0\left[\mathcal{M} - \operatorname{diag}\left(\bar{c}_u m_u \,\bar{\chi}\chi, \,\bar{c}_d m_d \,\bar{\chi}\chi\right)\right]$

$$\mathscr{L}^{(N\pi)} \mapsto \mathscr{L}_{DM}^{(N\pi)} = \frac{F_0^2}{4} \operatorname{Tr} \left[U^{\dagger} \chi_{\mathcal{M}} + U \chi_{\mathcal{M}}^{\dagger} \right] + c_1 \operatorname{Tr} \left[\chi_{\mathcal{M}}^{+} \right] \bar{N}N + \cdots$$

• Expand interaction

$$U = u^2 = e^{i\pi \cdot \tau/F_0} \qquad \chi_{\mathcal{M}}^+ = u^{\dagger} \chi_{\mathcal{M}} u^{\dagger} + h.c.$$

• Iso-scalar interaction gets correction from one loop

$$\mathscr{L}_{DM}^{(N\pi)} = \bar{\chi}\chi \left[c_q^{(\pi)} \boldsymbol{\pi}^2 + c_q^{(ic)} \bar{N}N \right] + \cdots$$

$$c_q^{(ic)} = \frac{\sigma_{\pi N}}{2} \bar{c}_{u,d} \qquad c_q^{(\pi)} = \frac{m_\pi^2}{4} \bar{c}_{u,d} \qquad \bar{c}_{u,d} = \bar{c}_u (1-\epsilon) + \bar{c}_d (1+\epsilon) \qquad \epsilon = \frac{m_d - m_u}{m_d + m_u} \simeq 0.37$$

One-Body vs. Two-Body interactions

- DM two-pion exchange and contact interactions have same 'quark-scaling'
- Size of **nucleon sigma term** indicates relative strength of **one-body vs. two-body**

Power Counting – Operator Counting

Two-Pion Exchange

 $\left(\frac{g_A Q}{f_\pi}\right)^2 Q^2 \frac{Q^3}{(2\pi)^3} \frac{1}{Q^4} \approx \frac{2g_A^2}{\pi} \frac{Q^3}{m_N^2}$

tglied der Helmholtz-Gemeinschaf

From Nucleons to Nuclei

Dark Matter Interactions – From Nucleons to Nuclei

Light Nuclei Methodology

- Deterministic Scattering Solutions

Power Counting

Based on E. Epelbaum, H. Krebs, U.-G. Meißner arXiv:1412.0142

Convergence of ChPT observables

• ChPT provides systematic expansion of observables in small parameter: $Q \sim \frac{m_{\pi}}{\Lambda}$

$$\begin{aligned} |\mathcal{F}|^2 \\ X^{(\nu)} = X + \delta^{(\nu)}X = X + \sum_{i=1}^{i=1} Q^{\nu+i} \Delta X_i^{(\nu)} \\ \text{Chiral Approx.} \\ \text{of Observable} \quad \text{Chiral Uncertainty} \quad \text{Expansion Parameter} \quad \text{Expansion Coefficient} \end{aligned}$$

$$\nu < \nu' \implies X^{\nu} - X^{\nu'} = Q^{\nu+1} \left(\Delta X_1^{(\nu)} + \mathcal{O}(Q) \right)$$

The Estimate (very conservative)

• Estimate chiral uncertainty by approximating expansion coefficients

$$\delta^{(\nu)} X \le Q^{\nu} \sum_{i=1} Q^{i} \left| \Delta X_{i}^{(\nu)} \right| \le Q^{\nu} \left| \Delta X_{\max}^{(\nu)} \right| \sum_{i=1} Q^{i} \le \frac{Q^{\nu+1}}{1-Q} \left| \Delta X_{\max} \right|$$

• Approximate maximal coefficient as maximum over chiral orders

$$\Delta X_{\max}^{(\nu)} \left| \le |\Delta X_{\max}| = \max_{\nu} \left(\left| \Delta X_{\max}^{(\nu)} \right| \right) = \max_{\nu} \left(\max_{\nu' > \nu} \left(\frac{\left| X^{(\nu)} - X^{(\nu')} \right|}{Q^{\nu+1}} \right) \right)$$

Our Results

Chiral Uncertainty Estimation

Chiral Uncertainty Estimation

Summary Plot – Results for 2nd cut-off

Uncertainty of Two-Body Results

- Size of marker corresponds size of cut-off
- Smallest marker = R_1 largest marker = R_5

Intentions for the Future

