The Nucleon Axial Coupling from QCD

Evan Berkowitz

Institut für Kernphysik Institute for Advanced Simulation Forschungszentrum Jülich

29 June 2017 Ruhr-Universität Bochum

1701.07559 1704.01114

JÜLICH

FORSCHUNGSZENTRUM

Nersc

NVIDIA

University of Glasgow

GERS

Rutgers

Mary

David Brantley, Henry Monge Camacho, Chia Cheng (Jason) Chang, Ken McElvain, André Walker-Loud

- Enrico Rinaldi
- FZJ EB

Bálint Joó

Nicolas Garron

LLNL Pavlos Vranas

NERSC Thorsten Kurth

UNC **Amy Nicholson**

Kate Clark nVidia

Chris Bouchard Glasgow

Chris Monahan

William & Kostas Orginos

The Nucleon Axial Coupling

$$\left\langle N(p) \mid A^a_\mu \mid N(p) \right\rangle = \left\langle N(p) \mid \bar{\psi} \gamma_\mu \gamma_5 \tau^a \psi \mid N(p) \right\rangle$$
$$= g_A \ \bar{n}(p) \gamma_\mu \gamma_5 \tau^a n(p)$$

- Free neutron lifetime
- Nuclear force
- Nuclear β decay

t

Applications

Big Bang Nucleosynthesis Astrophysics

New Physics Searches

A long-outstanding problem for LQCD

Bhattacharya, Cohen, Gupta, Joseph, Lin, Yoon PRD 89 (2014) arXiv:1306.5435

LQCD Systematics

continuum limit

physical quark masses

infinite volume limit

MILC Ensembles

MILC Collaboration Phys. Rev. D87 (2013) 054505

_												
-	abbr.	$a [\mathrm{fm}]$	m_l/m_s	volume	$m_{\pi} [\text{MeV}]$	$m_{\pi}L$	N_{cfg}	M_5	α	L_5	N_{src}	•
coarser	a15m310	0.15	0.2	$16^3 \times 48$	310	3.8	1960	1.3	2.0	12	24	
	a15m220	0.15	0.1	$24^3 \times 48$	220	4.0	1000	1.3	2.5	16	12	
	a15m130	0.15	0.036	$32^3 \times 48$	135	3.2	1000	1.3	3.5	24	5	
_	a12m400	0.12	0.334	$24^3 \times 64$	400	5.8	1000	1.2	1.5	8	8	
middle	a12m350	0.12	0.255	$24^3 \times 64$	350	5.1	1000	1.2	1.5	8	8	
	a12m310	0.12	0.2	$24^3 \times 64$	310	4.5	1053	1.2	1.5	8	4	
	a12m220L	0.12	0.1	$40^3 \times 64$	220	5.4	1000	1.2	2.0	12	4	
	a12m220	0.12	0.1	$32^3 \times 64$	220	4.3	1000	1.2	2.0	12	4	
	a12m220S	0.12	0.1	$24^3 \times 64$	220	3.2	1000	1.2	2.0	12	4	
	a12m130	0.12	0.036	$48^3 \times 64$	135	3.9	1000	1.2	3.0	20	3	
finer	a09m310	0.09	0.2	$32^3 \times 96$	310	4.5	784	1.1	1.5	6	8	
	a09m220	0.09	0.1	$48^3 \times 96$	220	4.7	1001	1.1	1.5	8	6	
												2

• Anyone is free to use them

- Large statistics available
- Capable of controlling all systematic uncertainties
- We use domain wall valence on the HISQ sea, $O(a^2)$ errors [1701.07559].

LQCD Systematics

physical quark masses

infinite volume limit

New Methods

New Analytic Tools

Improved Systematics Computationally Affordable

Effective Mass

$$C(t) = \langle \Omega | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | \Omega \rangle$$

= $\sum_{n} \langle \Omega | e^{\hat{H}t} \mathcal{O}(0) e^{-\hat{H}t} \frac{|n\rangle \langle n|}{2E_{n}} \mathcal{O}^{\dagger}(0) | \Omega \rangle$
= $\sum_{n} Z_{n} Z_{n}^{\dagger} \frac{e^{-E_{n}t}}{2E_{n}}$
 $M^{eff}(t) = -\partial_{t} \ln (C(t))$
 $\lim_{t \to \infty} M^{eff}(t) = E_{0}$

Standard Method

PNDME Phys. Rev. D94 (2016) arXiv:1606.07049

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

t_{min}

Improved systematics Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

Improved systematics

Improved systematics

Example Effective Matrix Element

Improved Systematics

PNDME Phys. Rev. D94 (2016) arXiv:1606.07049

Improved Systematics

- Not QCD Specific
- Any fermion bilinear matrix element

3-point \rightarrow 2-point function: easier fits

٠

- Known spectral decomposition
- Stochastic enhancement
- 3/2 the cost of one temporal separation

Systematics for an example point

Systematics for an example point

Another example point

Fit to
$$\chi PT$$
 $\epsilon_{\pi} = \frac{m_{\pi}}{4\pi F_{\pi}}$ $\epsilon_{a}^{2} = \frac{1}{4\pi} \frac{a^{2}}{\omega_{0}^{2}}$

analytic pieces
$$g_0 + c_2 \epsilon_{\pi}^2 + c_4 \epsilon_{\pi}^4$$

non-analytic $-\epsilon_{\pi}^2 \left(g_0 + 2g_0^3\right) \ln(\epsilon_{\pi}^2) + g_0 c_3 \epsilon_{\pi}^3$
analytic in a² $a_2 \epsilon_a^2 + b_4 \epsilon_{\pi}^2 \epsilon_a^2 + a_4 \epsilon_a^4$
NLO FV $\frac{8}{3} \epsilon_{\pi}^2 \left[g_0^3 F_1(m_{\pi}L) + g_0 F_3(m_{\pi}L)\right]$

Continuum Extrapolation

Chiral Extrapolation

χPT Convergence

Error Budget

$g_A = 1.283(17) [1.3\%]$

Backup Slides

Fit Stability

Comparison with the summation method

Summation method doesn't have this contamination

FH method requires new solves to study different insertions

Summation method needs new solves for different source-sink separations

Smearing Study

Nonperturbative Renormalization

What does this have to do with Feynman-Hellman?

Bouchard, Chang, Kurt, Orginos, Walker-Loud arXiv:1612.06963

$$C(t) = \left\langle \mathcal{N}(t)\bar{\mathcal{N}}(0) \right\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \,\mathcal{N}(t)\bar{\mathcal{N}}(0) \,e^{-S[U]} = \frac{\operatorname{tr}\left[\mathcal{N}(t)\bar{\mathcal{N}}(0)e^{-\beta H}\right]}{\operatorname{tr}\left[e^{-\beta H}\right]}$$

$$m_{\text{eff}} = \frac{1}{\tau} \ln \left(\frac{C(t)}{C(t+\tau)} \right) \xrightarrow{t \to \infty} E_0$$

FH:
$$\frac{\partial E_{\lambda}}{\partial \lambda} = \left\langle \psi_{\lambda} \left| \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} \right| \psi_{\lambda} \right\rangle$$

 $\partial_{\lambda} E_0 = a$ matrix element of interest

What does this have to do with Feynman-Hellman?

$$S[U] \to S[U] + \lambda \int_x \mathcal{J}(x)\mathcal{O}(x)$$

$$\partial_{\lambda}C(t) = -\left\langle \mathcal{N}(t) \left(\int_{x} \mathcal{J}(x)\mathcal{O}(x) \right) \bar{\mathcal{N}}(0) \right\rangle$$

$$\frac{\partial m_{\text{eff}}}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{\tau} \left[\frac{\partial_{\lambda} C(t)}{C(t)} - \frac{\partial_{\lambda} C(t+\tau)}{C(t+\tau)} \right]\Big|_{\lambda=0}$$

$$\mathcal{J}_{\mu}(x) = 1$$
$$\mathcal{O}^{\mu}(x) = \bar{q}\gamma^{\mu}\gamma^{5}\tau^{+}q$$

 $\xrightarrow{t \to \infty} g_A + O\left(e^{-E_n t}\right)$

Details of the spectral representation: 2-point

Bouchard, Chang, Kurt, Orginos, Walker-Loud arXiv:1612.06963

n

slide courtesy of Enrico Rinaldi

 $C(t) = \langle \Omega | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | \Omega \rangle$ = $\sum_{n} \langle \Omega | e^{\hat{H}t} \mathcal{O}(0) e^{-\hat{H}t} \frac{|n\rangle \langle n|}{2E_{n}} \mathcal{O}^{\dagger}(0) | \Omega \rangle$ = $\sum_{n} Z_{n} Z_{n}^{\dagger} \frac{e^{-E_{n}t}}{2E_{n}}$ = $\sum_{n} z_{n} z_{n}^{\dagger} e^{-E_{n}t}$ $z_{n} = \frac{Z_{n}}{\sqrt{2E_{n}}}$

 $Z_n \equiv \langle \Omega | \mathcal{O} | n \rangle$ $Z_n^{\dagger} \equiv \langle n | \mathcal{O}^{\dagger} | \Omega \rangle$

Details of the spectral representation: 3-point

Bouchard, Chang, Kurt, Orginos, Walker-Loud arXiv:1612.06963

slide courtesy of Enrico Rinaldi

 $N_J(t) = \sum_{t'} \langle \Omega | T\{O(t)J(t')O^{\dagger}(0)\} | \Omega \rangle$

$$N_J(t) = \sum_n \left[(t-1)z_n g_{nn}^J z_n^\dagger + d_n^J \right] e^{-E_n t} + \sum_{n,m \neq n} z_n g_{nm}^J z_m^\dagger \frac{e^{-E_n t + \frac{\Delta_{nm}}{2}} - e^{-E_m t + \frac{\Delta_{mn}}{2}}}{e^{\frac{\Delta_{mn}}{2}} - e^{\frac{\Delta_{nm}}{2}}}$$

$$g_{nn}^J \equiv \frac{J_{nn}}{2E_n} \qquad J_{nn} = \langle n|J|n \rangle$$

T

$$g_{nm}^J \equiv \frac{J_{nm}}{\sqrt{4E_n E_m}} \qquad J_{nm} = \langle n|J|m \rangle$$

$$\Delta_{nm} \equiv E_n - E_m$$
$$d_n^J \equiv Z_n Z_{J:n}^{\dagger} + Z_{J:n} Z_n^{\dagger} + Z_n Z_n^{\dagger} \langle \Omega | J | \Omega \rangle + \sum_j \frac{Z_n Z_{nj}^{\dagger} J_j^{\dagger} + J_j Z_{jn} Z_n^{\dagger}}{2E_j \left(e^{E_j} - 1\right)}$$

8

t

4

12

16

 $0.96 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Plateaus

