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Elastic Electron Scattering

Electrons are Not Ambidextrous Krishna Kumar, November 4 2014
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Unpolarized cross section

Energy E -> !: 0 < ! < 1 for Emin < E < ∞
Momentum Transfer Q2 -> " = Q2/(4M2)

GE,M(Q2) - electric and magnetic form factors

FFs encode charge, magnetic moment, RMS radii, …
GE(Q2) = 1 - (1/6) RCh2 Q2 + …

GM(Q2) = µp[1 - (1/6) RM2 Q2 + …]
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Proton Radius from e-scattering
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Measure cross section down to low Q2

How low in Q2 should/can one go?

 up to now Qmin2 = 4 x 10-3 GeV2

1% uncertainty in RCh - measure 1 to few x 10-4 precision!

The radius is defined as the slope of the FF at origin,

data are at finite Q2: extrapolation is unavoidable



Proton Radius from e-scattering

Bernauer et al., ‘10

A1 @ MAMI

RCh = 0.879(8)

!
!
!

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Proton$radius$puzzle$$

Electron$scaWering$facili/es$MAMI,$Jlab:$$

uniquely$posi/oned$to$deliver$high(precision$hadron$data$$$

MAMI$achieved$1%$measurement$of$RE$

recent$cross$sec/on$data$$$$A1@MAMI$

High$momentum$resolu/on$$~$10(4$$

Bernauer$et$al.$(2010)$



Proton Radius from e-scattering

• Individual data points - per cent level accuracy;

!

• Need large angle coverage to extract the radius to 1%

!

• Large statistics serves as a lever arm for extracting 
“1”to 0.05% precision;

!

• Higher Q2 data influence the extracted radius

!

• The lower in Q2 one goes, the lesser are higher order 
terms important - plans with ISR @ Mainz, PRad @ JLab, 

         Q2 ≥ 10-4 GeV2



Proton Radius from e-scattering
- Bernauer et al.: used full statistics (low and moderate Q2)

 studied systematics due to different fit functions 

 (polynomial, splines, dipole, double dipole etc.)

 #2 close to 1 with 1400 d.o.f.

REp = 0.879(8) fm

- Lorenz ’12,13: Dispersion relation fit GE,M (Q2) =
Z 1

4m2
⇡

dt ⇢E,M (t)
t + Q2

Model of the spectral function: 2π continuum + VDM + QCD asymptotics

Radius mainly sensitive to the lowest states (2π, 3π) which are taken as 

exact -> fit function might not be flexible enough, #2 > 1.1

Consistent with previous DR fits (Höhler ‘76, Mergell ’96, …)

REp = 0.84(1) fm

- Hill, Paz ‘10: Conformal mapping + Fourier series for the spectral fn.
REp = 0.87(2) fm

Data tend to larger radii; Need extra input to get smaller radii



Principal (energy) Q.N.: N=1,2,3…; 

Orbital momentum Q.N.: L=S,P,D…; p

e�(µ�)$

If only one photon were exchanged:

Electrons occupy stationary orbits
Energy levels

No extrapolation problem in atoms;

typical momentum transfer in H-atom: 

 keV2 in e-H, MeV2 µ-H

REᴾ from Lamb Shift in Hydrogen



1S

2S,P,D,...

...

2P

2S

+ . . .

Radiative corrections: level splittings!

REᴾ from Lamb Shift in Hydrogen

nS-nP splitting (Lamb shift) - authentic prediction of SM (QED)
Precise calculations of QED corrections: p.p.m. level precision



The proton is not a point-like charge - has a finite size

 - Lamb shift is sensitive to the proton radius

REᴾ from Lamb Shift in Hydrogen

Finite SizeQED

few p.p.m. correction

exceeds the QED precision

can be extracted 



REᴾ from Lamb Shift in Hydrogen

CODATA
RCh = 0.8779(94) fm

e-scattering
RCh = 0.879(8) fm

RCh = 0.8775(51) fm
Combined

%H data @ PSI

4% discrepancy for RCh (0.6% precision from e-p) - 7& away!

Pohl et al [CREMA Coll.] ’10, Antognini et al. ‘13
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Almost all individual e-H points are within 1.5' from the muonic point

BUT they all lie systematically at larger radii - correlated systematics? 

All QED corrections have been studied up to (6 - under control

Electron scattering is the most precise single measurement and is 

in nice agreement with the statistical average of the e-H data.

Most of the measurements are old - may be a good idea to remeasure

New experiments with projected 1% radius extraction - under way:

2S-2P measurement - York U. (Canada);

2S-4S measurement - MPI Garching;

1S-3S measurement - Laboratoire Kastler Brossel (Paris);

REᴾ from e-H



What’s special about �-H?
QED: the only difference is the mass

e�

p
µ�

p

Hydrogen atom muonic Hydrogen
Bohr radius

Fine structure constant
Reduced lepton-proton mass

Finite size Lamb shift:

�H unstable (�2S ~ �s) - 7 o.o.m. still make it 10 times more precise



REᴾ from �-H

Using the proton radius from eH and scattering, expect

Observed splitting - off by 8%, radius off by 4%
h
�EMeasured

2P�2S ��EQED
2P�2S

iMeasured
⇡ �3.7 meV

h
�EMeasured

2P�2S ��EQED
2P�2S

i
Expected

⇡ �4.0 meV

What if the �H experiment is wrong? 

Exp. precision: �eV, much smaller than missing 300 �eV;

Pohl et al. and Antognini et al. measured 2P1/2 - 2S and 2P3/2 - 2S 
transitions, found consistency;

No other facility able to redo the �H experiment exists at the 
moment.



What has gone wrong?$$Lamb$shiw:$QED$correc/ons$

Calculated!by!several!groups!

1!loop!electron!

2!loop!electron!

ΔE!=!205.0282!meV!!

ΔE!=!1.5081!meV!!

Muon!selfLenergy,!vacuum!polarizaBon! ΔE!=!L0.6677!meV!!

ΔE!=!0.1509!meV!!

other!QED!correcBons!calculated!:!all!of!size!0.005!meV!or!smaller <<!0.3!meV!

Pachucki (1996, 1999)  

Borie (1976, 2005) 
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1-loop eVP

�E = 205.0073 meV

2-loop eVP

�E = 1.5081 meV �E = 0.1509 meV
Muon SE + VP �E = -0.6703 meV

QED corrections up to (6 calculated: all < 0.005 meV

QED corrections?

Further hadronic structure corrections - start at (Z()5

Include the third Zemach radius:

�EMeasured
2P�2S ��EQED

2P�2S = � (Z↵)4m3
r

12


R2

p �
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2
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(2)

�

Correction 0.03 meV - 10 times smaller than the discrepancy



Proton Radius Puzzle: New Physics?

Stringent constraints from (g-2)e: substantial %-e non-universality

µ�p

e�

p

New 
Physics

(g-2)e (g-2)%

e-H %-H
Account for all constraints!



Proton Radius Puzzle: New Physics?
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Attractive scenario: 

scalar exchange would 


naturally pick up mass (Yukawa)still more: K-decay constraints
• Experiments have hunted for K± → !± + invisible, 

“invisible” meaning neutral but not photon(s), finding 
bound (w/ cuts so that 60 MeV < ! K.E. < 100 MeV)

28

B(K � µX)|
exptl cuts

< 2� 10�6

• Relevant here because of possible decay

Q

K(k)

• We have mass and 
putative coupling.  Can 
calculate BR.

Would contribute to decays K�� + invisible

muon magnetic moment
• Muon a! = (g-2)!/2 has 2 ppm discrepancy

26

3

III. MUON MAGNETIC MOMENT

The muon anomalous moment is accurately measured.
The theory for the anomalous moment is also quite accu-
rate, with the bulk of the error coming from uncertainties
in hadronic contributions. There is a small but persistent
discrepancy between experiment and theory. In terms of
aµ = (g � 2)µ/2,

aµ(data) = (116 592 089± 63)⇥ 10�11 [0.5 ppm],

aµ(thy.) = (116 591 840± 59)⇥ 10�11 [0.5 ppm],

�aµ = (249± 87)⇥ 10�11 [2.1 ppm± 0.7 ppm].
(7)

The data is from [13, 14] and the latest theory number
is from [15].

This discrepancy is four orders of magnitude in frac-
tional terms smaller than the one due to the Lamb shift.
Every particle that contributes to the Lamb shift also
contributes to the magnetic moment at the one loop level,
as in Fig. 3. The contributions of the pseudoscalar and
axial vector, whose couplings are not constrained by the
Lamb shift, have opposite sign to those from the scalar
and polar vector, and can be tuned to respect this much
smaller discrepancy.

p 1 p 2

q

k

p 1− k p 2− k

FIG. 3: One-loop magnetic moment correction

For scalar and pseudoscalar particles, we consider their
masses to be the same. The magnetic moment result is
known in the literature [16, 17],

�aµ =
m2

µ

8⇡2

Z 1

0
dz

C2
S z2(2� z)� C2

P z3

z2m2
µ + (1� z)M2

=
1

8⇡2

⇥

C2
SHS(r)� C2

PHP (r)
⇤

, (8)

where r = M2/m2
µ,

HS(r) =
3� 2r

2
+

r(r � 3)

2
ln r

� (r � 1)
p

r(r � 4) ln

p
r +

p
r � 4

2

�

(9)

and

HP (r) = �2r + 1

2
+

r(r � 1)

2
ln r

� r3/2(r � 3)p
r � 4

ln

p
r +

p
r � 4

2

�

. (10)

(The expressions continue nicely to r < 4.) Low and high
mass limits are
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Eq. (8) can be rearranged to solve for (Cµ
P )

2. The result
is plotted as the dashed line in Fig. 1. One notices that
fine tuning must be done to several significant figures at
higher masses.
For polar and axial couplings, we also only consider the

case where their masses are equal. Their contribution to
the muon’s magnetic moment is
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Rearranging Eq. (13) allows for the evaluation of
(Cµ

A)
2. The result is plotted as the dashed line in Fig. 2.

More general combinations of S, P , V , and A are
also possible. Of note is the model of Ref. [8], which
involves a vector particle with extra parity violating cou-
pling to the muon with (in our notation) fixed Cµ

V and
Cµ

A, that achieves fine tuning using a scalar, also with
definite muonic coupling, but with a tunable mass.

• Must fix 40,000 ppm discrepancy in proton radius 
without exaggerating 2 ppm discrepancy in a!.

• Useful note: corrections to (g-2)! from polar vector or 
axial vector have opposite sign.

p 1 p 2

q

k

p 1− k p 2− k

• Similarly for scalar and 
pseudoscalar exchange

Would contribute to the muon a.m.m.

muon magnetic moment
• Muon a! = (g-2)!/2 has 2 ppm discrepancy

26

3

III. MUON MAGNETIC MOMENT

The muon anomalous moment is accurately measured.
The theory for the anomalous moment is also quite accu-
rate, with the bulk of the error coming from uncertainties
in hadronic contributions. There is a small but persistent
discrepancy between experiment and theory. In terms of
aµ = (g � 2)µ/2,

aµ(data) = (116 592 089± 63)⇥ 10�11 [0.5 ppm],

aµ(thy.) = (116 591 840± 59)⇥ 10�11 [0.5 ppm],

�aµ = (249± 87)⇥ 10�11 [2.1 ppm± 0.7 ppm].
(7)

The data is from [13, 14] and the latest theory number
is from [15].

This discrepancy is four orders of magnitude in frac-
tional terms smaller than the one due to the Lamb shift.
Every particle that contributes to the Lamb shift also
contributes to the magnetic moment at the one loop level,
as in Fig. 3. The contributions of the pseudoscalar and
axial vector, whose couplings are not constrained by the
Lamb shift, have opposite sign to those from the scalar
and polar vector, and can be tuned to respect this much
smaller discrepancy.

p 1 p 2

q

k

p 1− k p 2− k

FIG. 3: One-loop magnetic moment correction

For scalar and pseudoscalar particles, we consider their
masses to be the same. The magnetic moment result is
known in the literature [16, 17],

�aµ =
m2

µ

8⇡2

Z 1

0
dz

C2
S z2(2� z)� C2

P z3

z2m2
µ + (1� z)M2

=
1

8⇡2

⇥

C2
SHS(r)� C2

PHP (r)
⇤

, (8)

where r = M2/m2
µ,

HS(r) =
3� 2r

2
+

r(r � 3)

2
ln r

� (r � 1)
p

r(r � 4) ln

p
r +

p
r � 4

2

�

(9)

and

HP (r) = �2r + 1

2
+

r(r � 1)

2
ln r

� r3/2(r � 3)p
r � 4

ln

p
r +

p
r � 4

2

�

. (10)

(The expressions continue nicely to r < 4.) Low and high
mass limits are

�HS =

8

<

:

3
2 , M ⌧ mµ ,

ln M2

m2
µ
� 7

6 , M � mµ ,
(11)

and

�HP =

8

<

:

1
2 , M ⌧ mµ ,

ln M2

m2
µ
� 11

6 , M � mµ .
(12)

Eq. (8) can be rearranged to solve for (Cµ
P )

2. The result
is plotted as the dashed line in Fig. 1. One notices that
fine tuning must be done to several significant figures at
higher masses.
For polar and axial couplings, we also only consider the

case where their masses are equal. Their contribution to
the muon’s magnetic moment is

�aµ =
m2

µ

4⇡2

Z 1

0

dz

z2m2
µ + (1� z)M2

⇢

C2
V z

2(1� z)

� C2
A



z(1� z)(4� z) +
2m2

µ

M2
z3
��

=
1

4⇡2

⇥

C2
V HV (r)� C2

AHA(r)
⇤

. (13)

Here [16, 17]

HV (r) =
1� 2r

2
+

r(r � 2)

2
ln r

� r1/2(r2 � 4r + 2)p
r � 4

ln

✓p
r +

p
r � 4

2

◆

, (14)

with limits

HV (r) =

(

m2
µ

3M2 , M ! 1 ,
1
2 , M ! 0 ,

(15)

and [16]

HA(r) =
1

r
+

2r � 5

2
� r2 � 4r + 2

2
ln r

+ (r � 2)
p

r(r � 4) ln

✓p
r +

p
r � 4

2

◆

, (16)

with

HA(r) =

8

<

:

5m2
µ

3M2 , M ! 1 ,

m2
µ

M2 � ln M2

m2
µ
� 5

2 + . . . , M ! 0 .
(17)

Rearranging Eq. (13) allows for the evaluation of
(Cµ

A)
2. The result is plotted as the dashed line in Fig. 2.

More general combinations of S, P , V , and A are
also possible. Of note is the model of Ref. [8], which
involves a vector particle with extra parity violating cou-
pling to the muon with (in our notation) fixed Cµ

V and
Cµ

A, that achieves fine tuning using a scalar, also with
definite muonic coupling, but with a tunable mass.

• Must fix 40,000 ppm discrepancy in proton radius 
without exaggerating 2 ppm discrepancy in a!.

• Useful note: corrections to (g-2)! from polar vector or 
axial vector have opposite sign.

p 1 p 2

q

k

p 1− k p 2− k

• Similarly for scalar and 
pseudoscalar exchange

Requires fine-tuned S + PS or V + A exchanges

Tucker-Smith, Yavin ’11; Batell et al, ’11;  
Brax, Burrage ’11; Rislow, Carlson ’12, ’14; …



Proton Radius Puzzle: New Physics?

Carlson, Rislow, ‘12K-decay constraints
• Solid line is sum of scalar and 

pseudoscalar couplings.
• Lower mass or higher mass 

o.k., but 90-200 MeV 
excluded.

29

• Same for polar and axial vectors.
• Solid is one particle with both V 

and A couplings.
• Dashed line is two particles, one 

polar and one axial vector.
• Lower masses excluded, 160 MeV 

for PV case, 210 for other case.
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Conclusion: BSM explanation possible, requires lepton non-universality, 

but fine tuned to evade the g-2 constraints



Further hadronic effects?

Hadronic correction at (Z�)5 - included partially!

Soft Coulomb:

included in


Schrödinger WF

Hard box:

only part of it


included 

(3rd Zemach m.)

2

q q

kk

p p

FIG. 1: The box diagram for the O(α5) corrections.

The Feynman diagram for the two-photon proton-
structure correction to the Lamb shift is shown in Fig. 1.
To the level of accuracy needed here, all external lines
have zero three-momentum. The blob corresponds to
off-shell forward Compton scattering, given in terms of
the Compton tensor

Tµν(p, q) =
i

8πM

∫
d4x eiqx⟨p|Tjµ(x)jν(0)|p⟩

=

(
−gµν +

qµqν
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)
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+
1

M2

(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
T2(ν, Q2), (6)

where q2 = −Q2, ν = p · q/M, and M is the nucleon
mass. A spin average is implied and the state normal-
ization is ⟨p|p′⟩ = (2π)3 2E δ3( p⃗ − p⃗′). The functions
T1,2(ν, q2) are each even in ν and their imaginary parts
are related to the structure functions measured in elec-
tron or muon scattering by

Im T1(ν, Q2) =
1

4M
F1(ν, Q2),

Im T2(ν, Q2) =
1

4ν
F2(ν, Q2), (7)

with ν > 0 and where F1,2 are standard [15].

After doing a Wick rotation, where q0 = iQ0 and Q⃗ =
q⃗, one obtains the O(α5) energy shift as
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where m is the lepton mass, and φ2
n(0) = m3

r α3/(πn3)
with mr = mM/(M + m).

The Ti are obtained using dispersion relations. Regge
arguments [16] suggest that T2 satisfies an unsubtracted
dispersion relation in ν at fixed Q2, but that T1 will re-
quire one subtraction. Before proceeding, we will note
that the Born terms, obtained from the elastic box and
crossed box of Fig. 2 and the vertex function Γµ =

γµF1(Q2) + (i/2M)σµνqνF2(Q2) for an incoming pho-
ton, are
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0

− F2
1 (Q2)

}

,

TB
2 (q0, Q2) =

MQ2

π(1 + τp)

G2
E(Q2) + τpG2

M(Q2)

(Q2 − iε)2 − 4M2q2
0

, (9)

where τp = Q2/(4M2), and the electric and magnetic
form factors are

GE(Q2) = F1(Q2)− τpF2(Q2),

GM(Q2) = F1(Q2) + F2(Q2). (10)

The Born terms are reliable for obtaining the imaginary
parts of the nucleon pole terms, but not reliable in gen-
eral, since the given vertex assumes the incoming and
outgoing nucleons are both on shell.

Calling the first term in TB
1 the pole term, one can split

the whole of T1 into pole term and non-pole terms,

T1(q0, Q2) = T
pole
1 + T1 . (11)

The pole term alone evidently allows an unsubtracted
dispersion relation, and this term calculated from the
dispersion relation simply reproduces itself. With a once
subtracted dispersion relation for T1, one has

T1(q0, Q2) = T
pole
1 (q0, Q2) + T1(0, Q2)

+
q2

0

2πM

∫ ∞

νth

dν
F1(ν, Q2)

ν(ν2 − q2
0)

. (12)

The nucleon pole is isolated in T
pole
1 and the integral

begins at the inelastic threshold νth = (2Mmπ + m2
π +

Q2)/(2M). Similarly, as TB
2 contains only a pole term,

T2(q0, Q2) = TB
2 (q0, Q2) +

1

2π

∫ ∞

νth

dν
F2(ν, Q2)

ν2 − q2
0

. (13)

With

∆E = ∆Esubt + ∆Einel + ∆Eel , (14)

we obtain

∆Esubt =
4πα2

m
φ2

n(0)
∫ ∞

0

dQ2

Q2

γ1(τℓ)√
τℓ

T1(0, Q2) , (15)

q q

kk

p pp p

k

q q
p

k

FIG. 2: Elastic contributions to the box diagram.

Blob: forward virtual Compton tensor
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Do the full calculation



Polarizability Correction from DR

�E = � ↵2

2⇡mlMd
�2

n(0)
Z

d4q
(q2 + 2⌫2)T1(⌫, q2)� (q2 � ⌫2)T2(⌫, q2)

q4[(q2/2ml)2 � ⌫2]

(nP - nS) splitting

T-ordered non-local product of two vector currents - complicated!

Gauge, Lorentz inv. Tµ⌫ =
✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q2) +

p̂µp̂⌫

M2
T2(⌫, Q2)

T

µ⌫

=
i
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Z
d

4
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Polarizability Correction from DR

Form factors
Unpolarized 


structure functions F1,2

Dispersion relations (subtracted for T1)

Optical theorem: absorptive part of T1,2 related to data



Polarizability Correction
Dispersion Relation + Data

Lamb shift is obtained as

Good quality data (e.g., JLab) on F1,2 0< Q2< 3 GeV2, W< 4 GeV



Polarizability Correction

Lamb shift is obtained as

Subtraction function related to 

proton’s magnetic polarizability �M 


Low-Energy Theorem: T1(0, Q2) = (Q2/e2) �M



Subtraction Constant
Proton (dipole) polarizabilities
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PDG 2012

Separation of proton polarizabilities with the beam asymmetry of Compton scattering

Nadiia Krupina and Vladimir Pascalutsa

PRISMA Cluster of Excellence Institut für Kernphysik,

Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Dated: July 22, 2013)

We propose to determine the magnetic dipole polarizability of the proton from the beam asymme-
try of low-energy Compton scattering based on the fact that the leading non-Born contribution to
the asymmetry is given by the magnetic polarizability alone; the electric polarizability cancels out.
The beam asymmetry thus provides a simple and clean separation of the magnetic polarizability
from the electric one. Introducing polarizabilities in a Lorentz-invariant fashion, we compute the
higher-order (recoil) e↵ects of polarizabilities on beam asymmetry and show that these e↵ects are
suppressed in forward kinematics. With the prospects of precision Compton experiments at the
MAMI and HIGS facilities in mind, we argue why the beam asymmetry could be the best way to
measure the elusive magnetic polarizability of the proton.

PACS numbers: 13.60.Fz - Elastic and Compton scattering, 14.20.Dh - Protons and neutrons, 25.20.Dc -

Photon absorption and scattering

The current Particle Data Group (PDG) [1] values of
the electric- and magnetic-dipole polarizabilities of the
proton [2, 3], i.e.,

↵E1 = (12.0± 0.6)⇥ 10�4 fm3, (1a)

�M1 = (1.9± 0.5)⇥ 10�4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral e↵ective field theory (ChEFT) [4, 5],
as can be seen in Fig 1. The state-of-the-art ChEFT
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with
octet and decuplet fields [11], are in excellent agreement
with the experimental Compton-scattering cross sections,
but not necessarily in agreement with the polarizabilities
extracted from these data by the experimental groups,
c.f. [12] for review. The situation is becoming more acute
as the demand for precise knowledge of nucleon polariz-
abilities is growing; they are for instance the main source
of uncertainty in the extraction of the proton charge ra-
dius from the muonic hydrogen Lamb shift (see [13] for a
recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polariz-
abilities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For
example, the non-Born (NB) part of the unpolarized dif-
ferential cross section for Compton scattering o↵ a target
with mass M and charge Ze is given by [2]

d�(NB)

d⌦L
= �Z2↵em

M

✓
⌫0

⌫

◆2

⌫⌫0
⇥
↵E1

�
1 + cos2 ✓L

�

+ 2�M1 cos ✓L
⇤
+O(⌫4), (2)

where ⌫ = (s �M2)/2M and ⌫0 = (�u +M2)/2M are,

respectively, the energies of the incident and scattered
photon in the lab frame, ✓L (d⌦L = 2⇡ sin ✓Ld✓L) is the
scattering (solid) angle; s, u, and t = 2M(⌫0 � ⌫) are
the Mandelstam variables; and ↵em = e2/4⇡ is the fine-
structure constant. Hence, given the exactly known Born
contribution [14] and the experimental angular distribu-
tion at very low energy, one could in principle extract
the polarizabilities with a negligible model dependence.
In reality, however, in order to resolve the small polar-
izability e↵ect in the tiny Compton cross sections, most
of the measurements are done at energies exceeding 100
MeV, i.e., not small compared to the pion mass m⇡. It
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FIG. 1: (Color online). The scalar polarizabilities of the pro-
ton. Magenta blob represents the PDG summary [1]. Exper-
imental results are from Federspiel et al. [6], Zieger et al. [7],
MacGibbon et al. [8], and TAPS [9]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of ↵E1 + �M1 [9] (broader band)
and [10]. ChPT calculations are from [4] (B�PT—red blob)
and the ‘unconstrained fit’ of [5] (HB�PT—blue ellipse).
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Dipole (like FF): Pachucki, 1996 
Pion loops: Vanderhaeghen & Carlson, 2011  
HBChPT + dipole: Birse & McGovern, 2012  
BChPT: Alarcón, Pascalutsa,Lenski 2014 
Finite Energy Sum Rule: MG, Llanes-Estrada, Szczepaniak, 2013

Total polarizability correction

�E2P�2S = �40± 5 µeV

�EMissing ⇡ �300 µeV

Hadronic structure corrections 

to proton radius puzzle are


constrained

All known constraints built in!

Different approaches to estimate Fβ(Q2)



Exotic Hadronic Contributions?

7
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FIG. 4: (Color online) Subtraction function [T1(0, Q2) �
T1(0, 0)]/Q2 in units of 10�4 fm3 as obtained from FESR (red,
solid), from the model of Ref. [14] (blue, dashed), from Ref.
[1] (magenta,dash-dotted), and from Ref. [35] (black, dotted).

only possible to unambiguously identify T1(0, Q2) with
a combination of known or measurable quantities (form
factors and polarizabilities) modulo a dispersion inte-
gral in the annihilation channel that is largely unknown.
Rewriting the findings of Ref. [24] for T1(0, Q2) we find

T1(0, Q2) = � ↵

M
[F 2

D

(Q2)� ⌧F 2
P

(Q2)] + Q2�(Q2) + . . . ,

(43)

where we omitted terms coming from that dispersion in-
tegral in the annihilation channel.

The reason for such detailed discussion is to remind the
reader that to relate the unphysical subtraction constant
T1(0, Q2) to measurable quantities like the polarizability
and elastic form factors, a good deal of caution should
be exercised.

Following the analysis presented in this paper, the sys-
tematic uncertainty in the Lamb shift from this term
has been significantly reduced. We have employed the
method of the Finite Energy Sum Rules to analyze this
term, explicitly displaying the contributions it receives
from the known t-channel Regge and s-channel reso-
nances. There is no double counting of these resonances
with respect to Einel. The alternative analysis presented
here provides information on the subtraction term from
Regge theory and the resonance region, reducing the un-
knowns to the fixed pole of Compton scattering. Our
Finite Energy Sum Rule in Eq. (31) has for the first
time made it possible to predict the Q2-dependence of
the subtraction function directly from existing experi-
mental data. In Fig. 4 we compare the function T̄1(Q2)
as obtained from FESR to phenomenological Ansätze of
previous analyses. We observe that all approaches e↵ec-
tively have similar values of T̄1(0) but in view of the com-
plicated situation with the low-energy theorem discussed

This work Ref. [1] Ref. [14] Ref. [35]

�Esubt 3.3± 4.6 6.6 5.3± 1.9 9.0± 1.0

�Eel �30.1± 1.2 �27.8 �29.5± 1.3 �29.5± 1.3

�Einel �13.0± 0.6 �13.9 �12.7± 0.5 �12.7± 0.5

�E �39.8± 4.8 �35.1 �36.9± 2.4 �33± 2

TABLE I: Numerical results for the O(↵5) proton structure
corrections to the 2P � 2S Lamb shift in muonic hydrogen in
µeV. The entry �Esubt from Ref. [35] obtains by summing
the Born non-pole and polarizability contributions; that work
uses the values obtained for �Eel, �Einel in Ref. [14].

above we stress that this is a coincidence. Neglecting
the t-channel contributions in Eq. (43) and removing
the contributions of the form factors (3.4⇥10�4 fm3 and
0.5⇥10�4 fm3) we would arrive at � = �0.9⇥ 10�4 fm3.
Note that the most recent determination of the magnetic
polarizability was given in the HBChPT framework in
Ref. [38],

� = [3.15⌥ 0.35± 0.2⌥ 0.3]⇥ 10�4fm3, (44)

with the three uncertainties identified in Ref. [38] as
”statistical”, ”Baldin” and ”theory”, respectively. It sug-
gests that to connect the result of this work for the sub-
traction constant T1(0, Q2) in terms of the FESR to the
value of the magnetic polarizability, the aforementioned
t-channel contributions should not be neglected.

We have shown that the contribution of the subtrac-
tion term �Esubt is small, ⇡ 3µeV, and its large relative
error of order 5µeV does not alter the conclusion that
the overall contribution of the nucleon photoexcitation
processes to the Lamb shift in muonic hydrogen is about
-40±5µeV, in agreement with previous evaluations. A
numerical comparison with existing calculations is shown
in Table I.

Our overall estimated uncertainty has increased
slightly with respect to that by Pachucki [1], Carlson
and Vanderhaeghen [14], as well as chiral perturbation
theory [35, 37], while it is reduced compared to Hill and
Paz [36]. The new method of the finite energy sum rule
presented in this work allows for a reliable estimate of the
subtraction constant contribution and the uncertainty
thereof, based on virtual photoabsorption data and on
the natural Q2-dependence of the J = 0 pole. Recent
model calculations by Miller et al., designed to resolve
the proton radius puzzle in terms of the two-photon ex-
change contribution, are not supported by resonance re-
gion data at low Q2 [39] and require an unnaturally large
value of the J = 0 pole for hard virtual photons [40].

The 300 µeV discrepancy between the direct muonic
Hydrogen Lamb shift measurement and estimates for it
based on usual (electronic) Hydrogen is unnaturally large
for the hadronic structure-dependent corrections at order
O(↵5) that have been proposed in the literature, basi-
cally Eq. (5), and the explanation must be looked for
elsewhere.

Alternative form factor....

Judith McGovern Proton Polarisability contribution to the Lamb Shift Manchester April 26th 2013

Form factor constrained for
p

Q2 ⇠< 300 MeV, and at large Q2.
How different could it be in between?
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G. Miller, Phys. Lett. B 718 1078 (2013)

Beyond range validity of cPT, modelling of form factor with s-channel nucleon res-
onances and t-channel Regge poles show no evidence of strange behaviour
Gorchtein et al arxiv/1302.2807

Miller et al 2011

Reasonable hadronic models
To get ~300 μeV Lamb shift:!

need something like this



Exotic Hadronic Contributions?
Cottingham Formula André Walker-Loud

µ ⌫

pp

qq

(a) (b)

Figure 1: The Cottingham Formula intuitively relates the forward Compton Scattering (a) to the O(a f .s.)
electromagnetic self-energy (b).

The subscript R on the integral reminds us that the self-energy contains a logarithmic divergence
and must be renormalized [10]. The spin-averaged forward Compton Scattering tensor is given by

Tµn(p,q) =
i
2 Â

s

Z
d4xeiq·xhps |T

�
Jµ(x)Jn(0)

 
|psi

=

✓
qµqn

q2 �gµn

◆
T1(q0,�q2)+

✓
pµ �qµ

p ·q
q2

◆✓
pn �qn

p ·q
q2

◆
T2(q0,�q2)

M2 (2.2)

Cottingham showed that by performing the Wick rotation q0 ! in and then a variable transforma-
tion Q2 = q

2 +n2, the nucleon self-energy can be related to the experimentally measured structure
functions;

dMg =
a f .s.

8p2

Z L2

0
dQ2

Z +Q

�Q
dn

p
Q2 �n2

Q2
T µ

µ
M

+dMc.t.(L) , (2.3)

where

T µ
µ =�3T1(in ,Q2)+

✓
1� n2

Q2

◆
T2(in ,Q2) . (2.4)

One uses fixed-Q2 dispersion integrals to determine the scalar functions Ti(in ,Q2) in terms of their
experimentally measured absorptive (imaginary) parts. It is known that T2 satisfies an unsubtracted
dispersion integral while T1 requires one subtraction [11]. These scalar functions are crossing
symmetric Ti(�n ,Q2) = Ti(n ,Q2), thus given by

T1(n ,Q2) = T1(0,Q2)+
n2

2p

Z •

nth

dn 0 2n 0

(n 0)2((n 0)2 �n2)
2ImT1(n 0+ ie,Q2) (2.5)

T2(n ,Q2) =
1

2p

Z •

nth

dn 0 2n 0

(n 0)2 �n2 2ImT2(n 0+ ie,Q2) (2.6)

The +ie in the argument indicates the function is evaluated just above the cut on the positive real
axis (see Fig. 2). The absorptive parts are given in terms of the well known nucleon structure
functions

2ImT1(n ,Q2) = 2p F1(n ,Q2) , 2ImT2(n ,Q2) = 2p M
n

F2(n ,Q2) , (2.7)

to which we have implicitly included the isolated elastic nucleon pole.2 Except in the low and high
Q2 limits, the subtraction function T1(0,Q2) can not be simply related to measured cross sections,
complicating the determination of dMg .

2The elastic pole is isolated because we are working to leading order in QED, so there is no Bremsstrahlung radia-
tion. The inelastic cut begins at the pion production threshold.

3

Cottingham formula (p-n mass difference)

Mp �Mn =
↵

2M(2⇡)3

Z
d4q

q2

⇥
T pµ

µ(⌫, q2)� Tnµ
µ(⌫, q2)

⇤

Subtraction function contribution
[Mp �Mn]Subt = ��p

M � �n
M

(8⇡)2M

Z ⇤2

0
dQ2Q2F�(Q2)

Could be purely isoscalar but...

VERY unnatural!


Should be seen in Deuteron (I=0)

Alternative form factor....

Judith McGovern Proton Polarisability contribution to the Lamb Shift Manchester April 26th 2013
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Beyond range validity of cPT, modelling of form factor with s-channel nucleon res-
onances and t-channel Regge poles show no evidence of strange behaviour
Gorchtein et al arxiv/1302.2807

Miller et al 2011
If the proton radius puzzle 


is due to subtraction contribution

�Mp
em ⇠ 600 MeV



Muonic deuterium
One further piece of information available - isotope shift:

simultaneous 1S-2S splitting measurement in eH and eD

Rd2-Rp2 from �H, �D @ PSI - in agreement (preliminary)

Exotic hadronic contributions excluded by this finding

Extraction from �D relies on nuclear structure-dependent 

polarizability correction.

Nuclear models vs dispersion relations:

R2
d �R2

p = 3.82007(65) fm2

Carlson, MG, Vanderhaeghen ‘14Leidemann, ’90; Pachucki ’13;  
Ji et al, ’14; Friar, ’14; 

�EDR
2S = �1.75(74) meV�ENucl.

2S = �1.68(16) meV

A simple ansatz for F�(Q2) used



Lacking Input to DR for �D 

All kinematics contribute to the dispersive integral;

Not all of them are equally important

The bulk of the correction - quasi elastic data 

 from ) ≃ 6-10 MeV and Q2 < 0.005 GeV2

  - just below the kinematics of available QE data 

New D(e,e’)pn data down to Q2 = 0.002 GeV2 A1@MAMI

taken and under analysis; 

2% measurement will reduce the uncertainty by a factor 2-4

Once the data are more precise: the model for F�(Q2) 

will become the main limitation of the calculation



Subtraction function 

from finite energy sum rule
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!π!max

!∞
FESR (real photons)
Nuclear photoabsorption:


from )thr = few MeV

to )max = few tens MeV;


“nothing” above that until

)π = 150 MeV;


Scale separation:

)max << )∞ << )π

Evaluate the DR at ) = )∞ 
Re T1(⌫1, 0) = Re T1(0, 0) +

⌫2
1

2⇡M
P
1Z

⌫thr

d⌫

⌫(⌫2 � ⌫2
1)

F1(⌫, 0)

Re T1(⌫1, 0) = � Z

4⇡Mp
+

⌫2
1
e2

(Z(↵p + �p) + N(↵n + �n))

Re T1(0, 0) = � Z2

4⇡M

Employ duality
LEX at )=0: nuclear Thomson term

LEX at )=)∞: nucleon Thomson terms + polarizabilities



Work out the integral

Baldin sum rule for nucleons: ↵p,n
E + �p,n

M =
2↵

M

1Z

⌫⇡

d⌫

⌫3
F p,n

1 (⌫, 0)

Non-interacting nucleons in the nucleus

Balance of coeffs. at ()∞)2 :

P
⌫⇡Z

⌫thr

d⌫

⌫(⌫2 � ⌫2
1)

F1(⌫, 0) +
1Z

⌫⇡

d⌫

⌫3
[F1(⌫, 0)� (Z + N)(ZF p

1 (⌫, 0) + NFn
1 (⌫, 0))] ⇡ 0

(⌫2
1/e2)[Z(↵p + �p) + N(↵n + �n)]L.H.S.
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2⇡M
P
1Z

⌫
thr

d⌫

⌫(⌫2 � ⌫2
1)

F1(⌫, 0) ⇡ � 1
2⇡M

⌫
maxZ

⌫
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d⌫

⌫
F1(⌫, 0)

+
⌫2
1

2⇡M
P

⌫
⇡Z

⌫
max
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⌫(⌫2 � ⌫2
1)

F1(⌫, 0)

+
⌫2
1

2⇡M

1Z

⌫
⇡

d⌫

⌫3
F1(⌫, 0)



Coeffs. at ()∞)0: Bethe-Levinger photonuclear sum rule

2
⌫

maxZ

⌫
thr

d⌫

⌫
F1(⌫, 0) = ZN

� Z

4⇡Mp
= � Z2

4⇡M
� 1

2⇡M

⌫
maxZ

⌫
thr

d⌫

⌫
F1(⌫, 0)

Integrated nuclear photoabsorption cross section is given by the 

number of “elementary” scatterers - nucleons

Thomas - Reiche - Kuhn sum rule in QM: 

integrated oscillator strength ~ number of oscillators



Bethe-Levinger SR: works to 10-20%
740 B. L. Berman and S. C. Fultz: Measurements of the giant dipole resonance

TABLE III. Quantities derived directly from the data—all nuclei.

Nucleus

'He
4He
'Li
7Li
12C
14N
16O

23Na
24Mg
25Mg
2'Mg
27Al
NatS&
51V
55Mn
58Ni

59Co
60¹i
"Cu
6'Cu
7'As
89Y

90Zr

91Zr
'2Zr
"Nb
94Zr
107Ag
115'
116Sn
117Sn
"8Sn
119Sn
120Sn
124Sn
127$

133CS
138B3
139L3
141Pr

'4'Nd
143Nd
144Nd
'4'Nd
146Nd
148Nd
150Nd
'"Eu
"Tb
160Gd
165Ho

175Lu
181TH

186+7
'97Au

206Pb

+ymax
(MeV)

30.2
31.4
32.0
30.5
37.4
29.5
28.0

27. 1
28.3
28.9
28.6
36.7
31.0
27.8
36.5
33.5

36.5
33.2

27.8
27.8
29.5
28.0
27.0
18.1
27.6
25.9
30.0
27.8
24.3
31.1
29.5
31.1
29.6
31.1
30.8
31.1
29.9
31.1
29.5
24.9
29.5
27. 1
24.3
29.8
16.9
18.1
20.2
19.8
20.2
20.2
20.2
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TABLE III. Quantities derived directly from the data—all nuclei.

Nucleus

'He
4He
'Li
7Li
12C
14N
16O

23Na
24Mg
25Mg
2'Mg
27Al
NatS&
51V
55Mn
58Ni

59Co
60¹i
"Cu
6'Cu
7'As
89Y

90Zr

91Zr
'2Zr
"Nb
94Zr
107Ag
115'
116Sn
117Sn
"8Sn
119Sn
120Sn
124Sn
127$

133CS
138B3
139L3
141Pr

'4'Nd
143Nd
144Nd
'4'Nd
146Nd
148Nd
150Nd
'"Eu
"Tb
160Gd
165Ho

175Lu
181TH

186+7
'97Au

206Pb

+ymax
(MeV)

30.2
31.4
32.0
30.5
37.4
29.5
28.0

27. 1
28.3
28.9
28.6
36.7
31.0
27.8
36.5
33.5

36.5
33.2

27.8
27.8
29.5
28.0
27.0
18.1
27.6
25.9
30.0
27.8
24.3
31.1
29.5
31.1
29.6
31.1
30.8
31.1
29.9
31.1
29.5
24.9
29.5
27. 1
24.3
29.8
16.9
18.1
20.2
19.8
20.2
20.2
20.2
18.8
20.2
28.9
28.0
27.4
29.5
28.9
26.8
23.0
24. 6
25.2
28.6
24. 7
21;7
26.4

o-;„t,(~,tot)

60XZ/3
0.325
0. 132
0.308
0.195
0.260
0.465
0.173
0.346
0.144
0.661.
0.608
0.408
0.288
0.728
0.976
0.329
1.007
0.781
G. 643
0.643
0.819
0.805
1.029
G. 487'
0.795
0.945
0.820
0.804
0.967
0.813
0.858
1.111
0.978
1.102
1.072
1.145
1.185
1.123
0.933
1.074
1.026
1.022
0.980
1.001
0.691
0.678
0.901
0.910
0.896
0.965
0.905
0.795
0.931
1.022
0.997
1.109
1.099
1.057
1.202
0.990
0.835
1.142
1.123
1.045
1.080
0.982

A—4/3
(mb)

0.178
0.047
0.172
0.086
0.067
0.129
0.044
0.088
0.034
0.157
0.149
0.089
0.036
0.153
0.186
0.061

0.189
0.151
0.133
0.138
0.162
0.151
0.193
0.101"
0.147
0.175
0.160
0.154
0.186
0.160
0.155
0.202
0. 175
0.199
0.190
0.202
0.209
0.200
0.164
0.201
0.182
0.183
0. 177
0. 175
0. 138
0.128.
0.170
0.176
0. 170
0. 193
0. 173
0. 155
0.178
0.181
0.175
0.198
0.195
0.183
0.215
0.177
0.146
0.201
0.191
0.179
0.190
0.167

0.00225 A '"
(mb-MeV ')
3.56
0.53
3.42
1.24
0.52
1.11
0.33
0.69
0.24
1.17
1.15
0.59
0.24
0.99
1.13
0.36
1.14
0.92
0.86
0.92
1.02
0.87
1.12
0.63'
0.83
1.00
0.98
0.93
1.12
1.01
0.89
1.17
G.99
1.16
1.07
1.17
1.19
1.16
0.93
1.18
1.04
1.05
1.02
0.97
0.85
0.75a
1.00
1.08
1.01
1.26
1.05
0.97
1.09
1.03
1.00
1 15
1.14
1.04
1.24
1.02
0.82
1.14
1.06
0.98
1.06
O. 93

0
0.014
0.50
0

0.005
0.006
0.31
0.046
0

0. 184
0.212
0.027
0. 162
G. 102

0.125
0.319
0.243
0.093
0.055
0.092
0.039
0. 181
0.414
0.209
0.547
0. 194
0.278
0.248
0.271
0.297
0.334
0.330
0.361
0.256
0.196
0.257
0.242
0.147
0. 167

O.G24
0.094
0.299
0.323
0.347
0.491
0.416
0.311
0.386
0.243
0.448
0.312
0.272
0.253
0.404
0.269
O. 449
0.262
0.156
0.183

Reference

Berman et al. , 1970a
Berman et a/. , 197ia
Bermo.n et al. , 1965
Bramblett et al. , 1973b
Fultz et al. , 1966
Berm3, n et al. , 1970c
Bramblett et al. , 1964
Caldwell et a/. , 1965
Alvarez et a/. , 1971
Fultz et a/. , 1971a
Alvarez et al. , 1971
Fultz et al. , 19713,
Fultz et al. , 1966
Caldwell et al. , 1963
Fultz et a/. , 1962a
Alvarez et al. , 1973a
Fultz et al. , 1973a
pFultz et al. , 1973c
Alvarez et a/. , 1973b
(Fultz ef al , 1973b.
pFultz et al. , 1973c
Fultz et al. , 1964
Fultz et a/. , 1964
Berm3, n et a/. , 1969a
Berman et a/. , 1967
Lepretre et al. , 1971
Young, 1972
Berm3.n et al. , 1967
Lepretre et al. , 1971
Berm3, n et a/. , 1967
Berman et a/. , 1967
Lepretre et a/. , 1971
Berman et a/'. , 1967
Berman et al. , 1969a
Fultz et al. , 1969
Fultz et a/. , 1969
Fultz et a/. , 1969
Fultz et a/. , 1969
Fultz et al. , 1969
Fultz et a/. , 1969
Fultz et al. , 1969
Brn,mblett et a/. , 1966b
Bergere et al, , 1969
Berman et al. , 1969a
Berman et al. , 1970c
Beil et al. , 71
Bramblett et al. , 1966b
Beil et a/. , 1971
Young, 1972
Carlos et al. , 1971
Carlos et al. , 1971
Carlos et a/. , 1971
Carlos et a/. , 1971
Carlos et al. , 1971
Carlos et al. , 1971
Carlos et al. , 1971
Herman et al. , 1969b
Bramblett et al. , 1964
Bergere et al, , 1968
Berman et al. , 1969b
Berme.n et al. , 1969b
Bergere et al. , 1968
Bergere et al. , 1969
Bramblett et al. , 1963
Bergere et al. , 1968
Berman et a/. , 1969b
Fultz et al. , 1962b
Veyssiere et al. , 1970
Harvey et al. , 1964

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975



Include hadronic photoabsorption

Complication: c.s. increases 

at high energies

Subtract Regge behavior: the integral runs up to finite energy N

Build a Regge-behaved analytic function

Re TR
1 (⌫, 0) = 0 +

⌫2

2⇡M
P

1Z

0

d⌫0

⌫0(⌫02 � ⌫2)
FR

1 (⌫0, 0)

F1(⌫ � 2 GeV, 0)! FR
1 (⌫, 0) = CM

✓
⌫

⌫0

◆↵M

+ CP

✓
⌫

⌫0

◆↵P

⌫0 ⇡ 1 GeV, ↵M ⇡ 0.5, ↵P ⇡ 1.09

Re [T1(⌫, 0)� TR
1 (⌫, 0)] = � Z2

4⇡M
+

⌫2

2⇡M
P

NZ

⌫thr

d⌫0[F1(⌫0, 0)� FR
1 (⌫0, 0)]

⌫0(⌫02 � ⌫2)

COMPTON SCATTERING FROM NUCLEI AND PHOTO- . . . PHYSICAL REVIEW C 84, 065202 (2011)

FIG. 3. (Color online) High energy photoabsorption cross sections per nucleon for six nuclear targets compared to the fit results (solid
lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from Ref. [26] for the proton and the deuteron,
and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.

this relies on a mean-field approach to the target, which we
would expect to become more accurate as the number of
target nucleons increases. For the α = 0 pole contribution,
our new result for the proton is significantly different from
the Thomson term, which is at variance with the original
result of Damashek and Gilman [5]. This discrepancy is
due to our use of the very high energy photoabsorption
data that has become available only recently [27]. As a
result, instead of the high-energy parametrization used in
Ref. [5],

σR+P (ν) ≈
(

96.6 + 70.2

√
1 GeV

ν

)

µb, (23)

we find

σR+P (ν) ≈
[

68.0
( ν

1 GeV

)0.097
+ 99.0

√
1 GeV

ν

]

µb. (24)

At an energy ν = 1 GeV, both formulas give almost identical
results, but at high energies they differ dramatically. At the

same time, the data in the resonance region have not changed
much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
they could shed more light on the asymptotic behavior of

TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0 ± 0.2 70.08 ± 1.26 57.24 ± 1.13 62.70 ± 6.0 45.88 ± 0.57 42.08 ± 1.96
cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14
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and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.
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much, so this leads to our new value for the α = 0 contribution
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and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
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and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.
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much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
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TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
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cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14

065202-5

GORCHTEIN, HOBBS, LONDERGAN, AND SZCZEPANIAK PHYSICAL REVIEW C 84, 065202 (2011)

TABLE II. Contributions to the finite energy sum rule for selected targets in units of GeV·µb. The entries in the second row are taken from
a review on nuclear data in Ref. [24].

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

1
2π2A

σ had
int 18.60 ± 0.31 17.46 ± 0.51 16.80 ± 0.62 16.54 ± 1.50 16.16 ± 0.57 16.57 ± 1.02

1
2π2A

σ nucl
int – – 0.197 0.30 0.480 0.69

1
2π2 cR

(E/GeV )1/2

1/2 14.19 ± 0.16 11.54 ± 0.39 10.96 ± 0.63 7.67 ± 1.66 11.03 ± 0.52 13.10 ± 1.31

r.h.s. of Eq. (17) −4.21 ± 0.35 −5.92 ± 0.65 −6.04 ± 0.88 −9.17 ± 2.24 −5.61 ± 0.77 −4.16 ± 1.66
−

(
2 + ZN

A2

)
α
M

−6.06 −6.82 −6.82 −6.82 −6.81 −6.78
1

2π2 cP (E/GeV ) 6.72 ± 0.02 6.92 ± 0.12 5.65 ± 0.11 6.19 ± 0.59 4.53 ± 0.06 4.16 ± 0.25

−Z2

A2
α
M

−3.03 −0.76 −0.76 −0.70 −0.60 −0.48
ReT α=0 −0.72 ± 0.35 0.25 ± 0.65 −1.14 ± 0.89 −3.68 ± 2.31 −1.71 ± 0.77 −0.48 ± 1.68

the forward nuclear Compton amplitude and could remove
uncertainties regarding the strength of the Pomeron, Reggeon,
and α = 0 pole contributions.

Finally, in addition to the paper by Damashek and Gilman
[5], there have been other evaluations of the α = 0 pole for
forward Compton scattering. Dominguez, Ferro Fontan, and
Suaya [11] and Shibasaki, Minamikawa, and Watanabe [12]
used a similar approach to that of Ref. [5] and independently
arrived at a qualitatively similar result,
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FIG. 4. (Color online) Upper panel: the fraction of the TRK sum
rule for nuclear targets 12C, 27Al, 65Cu, and 207Pb; middle panel:
experimental values (data points) vs. theoretical expectation (dotted
line) for our new constituent quark model (CQM) sum rule for the
proton, deuteron, 12C, 27Al, 65Cu, and 207Pb, in units of µb; lower
panel: results for the α = 0 pole for all targets considered, in µb.

where the uncertainty is dominated by the parameters of the
high-energy fit, reflecting the limited range of high-energy data
available at that time.

In Ref. [15], Dominguez, Gunion, and Suaya extended this
analysis by including the deuteron photoabsorption data. They
employed a model for nuclear effects to extract parameters
of the neutron from deuteron and proton data and evaluated
the finite energy sum rules (FESR) for both nucleons. Their
conclusions were that the α = 0 pole is consistent with the
respective Thomson term for both,

ReT α=0
n = (0 ± 1.5)µb GeV,

(26)
ReT α=0

p = (−3 ± 0.8)µb GeV,

where ReT α=0
p(n) refers to the proton (neutron), respectively.

Tait and White in Ref. [14] re-analyzed the FESR using a
more recent data set and obtained a much more conservative
estimate:

ReT α=0
p =

(
− 3+4

−5

)
µb GeV. (27)

Based on the recent proton data on photoabsorption at very
high energies [27] and the analysis of Tait and White [14],
we conclude that the errors in Eq. (26) were significantly
underestimated.

IV. SUMMARY AND CONCLUSIONS

In summary, we revisited the finite energy sum rules for
forward real Compton scattering on the proton and heavier
nuclei. As the photon energy increases and its wavelength
decreases, the Compton amplitude becomes sensitive to
progressively smaller features of a nuclear target. At the lowest
energies, the Compton amplitude is determined by scattering
on the target as a whole, whereas in the high-energy limit it is
expected to be determined by scattering on elementary target
constituents.

Finite energy sum rules provide a qualitative comparison
between the high-energy and low-energy limits of the scat-
tering amplitude. For nuclei, the Thomas-Reiche-Kuhn sum
rule relates the strength of the giant dipole resonance to
the difference between the nuclear Thomson term and the
incoherent sum of Thomson terms of protons residing in the
nucleus. In a similar fashion, we have proposed a new sum rule
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TABLE II. Contributions to the finite energy sum rule for selected targets in units of GeV·µb. The entries in the second row are taken from
a review on nuclear data in Ref. [24].
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82 Pb
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we conclude that the errors in Eq. (26) were significantly
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nuclei. As the photon energy increases and its wavelength
decreases, the Compton amplitude becomes sensitive to
progressively smaller features of a nuclear target. At the lowest
energies, the Compton amplitude is determined by scattering
on the target as a whole, whereas in the high-energy limit it is
expected to be determined by scattering on elementary target
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Finite energy sum rules provide a qualitative comparison
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rule relates the strength of the giant dipole resonance to
the difference between the nuclear Thomson term and the
incoherent sum of Thomson terms of protons residing in the
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Message: duality sum rules work;

Can be used for quantitative study;

Precision - can be 10-20%
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Generalize Bethe-Levinger SR to finite Q2:

LEX at finite Q2: Dirac (or charge) form factor + magnetic pol.

T1(0, Q2) = � Z2
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F 2
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e2
�MF�(Q2) F�(0) = 1
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The new sum rule: the Q2 slope of the TRK - BL sum rule
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Can test the sum rule: 

 - fit the electrodisintegration data in the nuclear range;

 - compare to the value of the nuclear magnetic pol. (if known)

Deuteron: �M known theoretically

EFT (lowest order): �Md = 0.068 fm2     Chen et al., 2002

Potential models (LO): �Md = 0.068 fm2   Friar 1997, Khriplovich 1979, …

Potential models (NLO): �Md = 0.078 fm2   Friar 1997

Nucleon �M: known and generally small (2 o.o.m.)

�p
M = 3.9(0.7) · 10�4 fm3, �n

M = 4.6(2.7) · 10�4 fm3

�p
M = 2.5(0.4) · 10�4 fm3, �n

M = 3.7(2.0) · 10�4 fm3PDG 2012

ChPT
Hagelstein et al., arXiv:1512.03765

Charge radii known: Rd = 2.14 fm, Rp = 0.840 fm, Rn2 = -0.116 fm2

Correction term: �↵R2
d

3M
+

↵R2
p + ↵R2

n

3Mp
+ �p

M + �n
M ⇡ 1⇥ 10�5fm3



Recent deuteron data fit Carlson, MG, Vanderhaeghen, PR A89 (2014)
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0.073(5) fm3  <->  0.096(16) fm3

1.5� off, but in the ballpark

effective field theory [19] and potential model [20]
approaches, summarized as βdM ¼ 0.072ð5Þ fm3. One can
now check how important the neglected terms are numeri-
cally. Using the value of the proton charge radius from
recent μH measurements [21,22], and the neutron charge
radius along with the nucleon magnetic polarizabilities
from Ref. [23] gives ∼1.6 × 10−3 fm3, 2 orders of magni-
tude below βdM. The effect of the deuteron charge radius
taken from [24] is of a similar order, ∼ − 1.5 × 10−3 fm3,
and is also negligible. However, for heavy nuclei, these two
contributions can have very different sizes, e.g., for lead,
the two terms give ∼0.08 fm3 and ∼ − 0.5 fm3, respec-
tively, which explains the choice of keeping the nuclear
radius effect but neglecting the nucleonic contributions.
The value of βM for lead is unknown, but αE þ βM ≈
14.5 fm3 [16] gives a rough idea, even though it can be
expected that βM ≲ 0.1αE for that nucleus.
Using a recently proposed detailed parametrization of

deuteron breakup data [17] that covers Q2 in the range
[0.005 GeV2; 3 GeV2] and energy between the deuteron
breakup threshold and well into the hadronic range, a
numerical evaluation of the right hand side of Eq. (8) can be
done. It leads to βdM ¼ 0.096ð15Þ fm3, close to the model-
based expectation, βdM ¼ 0.072ð5Þ fm3. Note that even
raising νmax to 140 MeV would increase the integral by
mere 1%, so the result is very robust. To enforce the
agreement, one needs to modify the parametrization of
Ref. [17] [Eq. (27) and Table II of that Ref.] via

fFSIT ðQ2Þ ¼ 2.15ð35Þ × 104 GeV−3Q2

½1þ 52ð8Þ GeV−2Q2&2
; ð10Þ

to

~fFSIT ðQ2Þ ¼ 1.61ð11Þ × 104 GeV−3Q2

½1þ 35ð6Þ GeV−2Q2&2.2
: ð11Þ

The error in the numerator is fixed by that in the value of
βdM, and the error (and a different power) in the numerator is
obtained by a new fit to the quasielastic (QE) data, as
described in Ref. [17]. The two fit functions are shown in
Fig. 2. With this exercise, I demonstrate that the existing
deuteron quasielastic data are consistent with the proposed
sum rule. The original parametrization in Ref. [17] led to a
1.5σ disagreement because the slope parameter was
obtained by an extrapolation beyond the kinematical range
covered by the data without using the value of βdM as a
constraint.
Another sum rule involving the Q2 slope of the inte-

grated structure functions was proposed by Bernabeu and
Jarlskog [25]. They assumed that the longitudinal ampli-
tude obtained as a linear combination of T1 and T2 obeys an
unsubtracted dispersion relation, and argued that the
longitudinal structure function has to vanish identically
at the real photon point independently of the energy to

ensure gauge invariance, hence, the integral becomes
convergent. In this way, they arrived at a sum rule for
the electric polarizability αE alone, which is, however,
incompatible with the βM sum rule proposed here. I believe
that the reason for the disagreement lies in their use of an
unsubtracted dispersion relation. Since it is the Q2 slope
that gives the sum rule, one, in reality, explicitly departs
from the real photon point; then, the argument of vanishing
of the longitudinal structure function at infinity is no longer
valid, and one is left with a divergent integral, so that the
limit Q2 → 0 does not exist.
The parametrization of deuteron quasielastic data was

used in Ref. [17] to estimate the two-photon exchange
(TPE) correction to the 2P-2S Lamb shift in the muonic
deuterium atom. A modification of the data parametrization
proposed above, based on the new sum rule, will lead to a
different prediction for that correction. Moreover, the
photonuclear sum rule discussed above can be further
extended beyond its value and slope at Q2 ¼ 0 (TRKLB
and the βnuclM sum rule, respectively) to predict the full Q2

dependence of the subtraction function via

Tnp
1 ð0; Q2Þ − Tnp

1 ð0; 0Þ

¼ 2αem
MT

Z
νmaxðQ2Þ

νminðQ2Þ

dν
ν
½F1ðν; Q2Þ − F1ðν; 0Þ&; ð12Þ

which contributes to the shift of the 2S state through
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FIG. 2 (color online). The comparison of the old fit without the
use of the sum rule, fFSIT (blue dashed curve) and the new fit using
the sum rule, ~fFSIT (red solid curve), with the uncertainty of each
fit indicated by the band of the respective color. The sum rule is
indicated by the star. The shaded band shows the kinematical
range that is covered by the existingDðe; e0Þpn data. The inset in
the upper right corner magnifies the small values of Q2 where the
slope of the new fit function is fixed to reproduce the value of βdM.
Data points correspond to experimental data sets analyzed in
Ref. [17] (Refs. [35–42] of that article).
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Fit of the form FQE(),Q2) ∙ fQE(Q2) + Fthr(),Q2) ∙ fthr(Q2)

The problem: need to extrapolate

down to Q2=0 from finite Q2;

Nuclear slopes are large

Can impose the value of �d - new fit



New application: He-3 Carlson, MG, Vanderhaeghen, in progress

Fit of the form FQE(),Q2) ∙ fQE(Q2) + Fthr(),Q2) ∙ fthr(Q2)
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�He�3
M = [4.20� 2.44 + 0.67 + 1.24] · 10�3 fm3 = 3.9 · 10�3 fm3

Sum rule prediction for the magnetic polarizability

Uncertainty? 10% from �p and �n; 10% from the fit; systematics?



Further generalization: the full Q2 dependence of �(Q2)

�M (Q2) =
2↵

M

⌫
maxZ

⌫
thr

d

d⌫

F1(⌫, Q2)� F1(⌫, 0)
Q2

Confront to the simple-minded FF-like model of our PR A89

�EDR
2S = �1.75(74) meV �ESR

2S = �1.94(74) meV

Estimate w/o sum rule Estimate with sum rule

Uncertainty dominated by the dispersion integral;

once more precise data allow to reduce the uncertainty - 

may lead to a shift in the extracted value of Rd !

Effect due to different Rp ~ 0.38 meV in �D; here - 0.19 meV

Effect on the Lamb shift calculation



Summary
Proton radius puzzle - inconsistency between the e-scattering

and eH on one hand, and %H data on the other hand.


!
Each part has subtleties but no clear solution found - 


 the puzzle persists

!

Scattering experiments: extrapolation issue

!
Electronic hydrogen: sensitivity issue

!
Muonic hydrogen: no experimental issues found to date 

further muonic atoms consistent with %H (preliminary)


!
BSM explanation possible but requires both lepton non-universality 


 and fine tuning to evade known constraints from other observables



Proton Radius Puzzle: what’s next?
More precise eH experiments coming (2S-2P, 1S-3S, 2S-4S);

!
e-p scattering: Q² down to 2 × 10-4 GeV2 @ Mainz, JLab

!
Deuteron radius from e-D scattering: new data at Mainz under analysis

Q2 > 0.002 GeV2, radius under 0.25%

!
To push Q² down and get the radius under 1%: 

 improved radiative corrections (TPE) necessary. 

 Recent works: MG ’14; Tomalak, Vanderhaeghen ’14, ’15(2)

!
Study lepton non-universality with %-p scattering: 

 MUSE @ PSI - elastic %-p scattering at Q² > 0.002 GeV2 (2017/18);

 �p -> �+�-p/�p -> e+e-p measurement may be more sensitive 

  Pauk, Vanderhaeghen ’15 - proposal under consideration in Mainz



Proton Radius Puzzle: what’s next?

Further muonic atoms: %D, %He-3, %He-4 - data taken at PSI, 

now analyzed or finalized

!
%D - more precise DR calculation needed:

new QE data on deuteron analyzed at Mainz 

  - to reduce the uncertainty of dispersion integrals by factor 2-4

sum rule for the nuclear magnetic polarizability derived (MG, ’15)

  - to reduce model dependence of the subtraction contribution

DR treatment of hyperfine splitting in %D underway

  - with Carlson and Vanderhaeghen


!
%He-3,4 - DR analysis underway (with Carlson and Vanderhaeghen)


  potential model calculation by Bacca and Co arXiv: 1512.05773


