

Duality sum rules in forward Compton scattering and the proton radius puzzle

Misha Gorshteyn Mainz University

Theory Seminar – Institut für Theoretische Physik II, Uni Bochum – April 28, 2016

Thanks to my collaborators:

Marc Vanderhaeghen (Mainz U.) Carl E. Carlson (College of William & Mary) Adam Szczepaniak (Indiana U.) Felipe LLanes-Estrada (U. Madrid) T. Londergan (Indiana U.) T. Hobbs (U. Washington)

MG, Hobbs, Londergan, Szczepaniak, Phys.Rev. C84 (2011) 065202 MG, Llanes-Estrada, Szczepaniak, Phys.Rev. A87 (2013) 052501, [arXiv:1302.2807] Carlson, MG, Vanderhaeghen, Phys.Rev. A89 (2014) 022504, [arXiv:1311.6512] MG, Phys.Rev. C90 (2014) 052201, [arXiv:1406.1612] MG, Phys.Rev.Lett 115 (2015) 222503, [arXiv:1508.02509]

As a motivation

Proton Radius Puzzle: the Status

Proton radius puzzle

Elastic Electron Scattering

Measure cross section down to low Q^2

$$\frac{d\sigma^{exp}}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \Big|_{Q^2 \to 0} = 1 + Q^2 \left[\frac{\mu_p^2 - 1}{4M^2} - \frac{1}{3}R_{Ch}^2\right] + \dots$$

The radius is defined as the slope of the FF at origin, data are at finite Q^2 : extrapolation is unavoidable

How low in Q² should/can one go? up to now $Q_{min}^2 = 4 \times 10^{-3} \text{ GeV}^2$

1% uncertainty in R_{Ch} – measure 1 to few x 10⁻⁴ precision!

A1 @ MAMI R_{Ch} = 0.879(8) Bernauer et al., '10

- Individual data points per cent level accuracy;
- Need large angle coverage to extract the radius to 1%
- Large statistics serves as a lever arm for extracting "1"to 0.05% precision;
- Higher Q² data influence the extracted radius

• The lower in Q^2 one goes, the lesser are higher order terms important – plans with ISR @ Mainz, PRad @ JLab, $Q^2 \ge 10^{-4} \text{ GeV}^2$

- Bernauer et al.: used full statistics (low and moderate Q^2) studied systematics due to different fit functions (polynomial, splines, dipole, double dipole etc.) $R_E^P = 0.879(8)$ fm χ^2 close to 1 with 1400 d.o.f.

- Lorenz '12,13: Dispersion relation fit $G_{E,M}(Q^2) = \int_{4m^2}^{\infty} \frac{dt \, \rho_{E,M}(t)}{t+Q^2}$

Model of the spectral function: 2π continuum + VDM + QCD asymptotics Radius mainly sensitive to the lowest states (2π , 3π) which are taken as exact -> fit function might not be flexible enough, $\chi^2 > 1.1$ Consistent with previous DR fits (Höhler '76, Mergell '96, ...)

 $R_{E}^{P} = 0.84(1) \text{ fm}$

- Hill, Paz '10: Conformal mapping + Fourier series for the spectral fn. $R_E^P = 0.87(2)$ fm Data tend to larger radii; Need extra input to get smaller radii

No extrapolation problem in atoms; typical momentum transfer in H-atom: keV² in e-H, MeV² µ-H

Electrons occupy stationary orbits Energy levels E_{NL}

Principal (energy) Q.N.: N=1,2,3...; Orbital momentum Q.N.: L=S,P,D...;

If only one photon were exchanged: $E_{2S} = E_{2P}$

nS-nP splitting (Lamb shift) – authentic prediction of SM (QED) Precise calculations of QED corrections: p.p.m. level precision

The proton is not a point-like charge – has a finite size
 Lamb shift is sensitive to the proton radius

$$\Delta E_{nP-nS} = \Delta E_{nP-nS}^{QED} - \frac{2(Z\alpha)^4}{3n^3} m_r^3 R_E^2 + \mathcal{O}(\alpha_{em}^5)$$

few p.p.m. correction
exceeds the QED precision
can be extracted

 $E_{2S} - E_{2P} = 33.7808(1) \,\mu \text{eV} + 0.0008 R_E^{p\,2} \,\mu \text{eV}$ QED Finite Size

CODATA $R_{Ch} = 0.8779(94) \text{ fm}$ e-scattering $R_{Ch} = 0.879(8) \text{ fm}$ Combined $R_{Ch} = 0.8775(51) \text{ fm}$ μ H data @ PSI

 $R_E^p = 0.84087(39) \,\mathrm{fm}$

Pohl et al [CREMA Coll.] '10, Antognini et al. '13

4% discrepancy for R_{Ch} (0.6% precision from e-p) - 7 σ away!

CODATA $R_{Ch} = 0.8779(94) \text{ fm}$ e-scattering $R_{Ch} = 0.879(8) \text{ fm}$ Combined $R_{Ch} = 0.8775(51) \text{ fm}$ μH data @ PSI

 $R^p_E = 0.84087(39) \, \mathrm{fm}$ Pohl et al [CREMA Coll.] '10, Antognini et al. '13 4% discrepancy for R_{Ch} (0.6% precision from e-p) – 7 σ away!

RE^P from e-H

Almost all individual e-H points are within 1.5σ from the muonic point BUT they all lie systematically at larger radii – correlated systematics? All QED corrections have been studied up to α^6 – under control Electron scattering is the most precise <u>single</u> measurement and is in nice agreement with the statistical average of the e-H data.

Most of the measurements are old – may be a good idea to remeasure New experiments with projected 1% radius extraction – under way: 2S-2P measurement – York U. (Canada); 2S-4S measurement – MPI Garching; 1S-3S measurement – Laboratoire Kastler Brossel (Paris);

What's special about μ -H?

QED: the only difference is the mass

Hydrogen atom

Bohr radius $R_B \sim \frac{1}{\alpha m_r}$ $m_{\mu} \approx 200 \, m_e$

muonic Hydrogen

Fine structure constant Reduced lepton-proton mass $m_r = \frac{mM}{m+M}$

 $\alpha \approx 1/137$

Finite size Lamb shift:

 $\Delta E_{2P-2S}^{R_E^p} \propto \alpha^4 m_r^3$

 $\Delta E_{2P-2S}^{eH} = -8.1 \times 10^{-7} R_E^2 \text{ meV} \qquad \Delta E_{2P-2S}^{\mu H} = -5.2275(10) R_E^2 \text{ meV}$ μ H unstable ($\tau_{2S} \sim \mu$ s) – 7 o.o.m. still make it 10 times more precise

R_E^P from μ -H

Using the proton radius from eH and scattering, expect $\begin{bmatrix} \Delta E_{2P-2S}^{\text{Measured}} - \Delta E_{2P-2S}^{QED} \end{bmatrix}^{\text{Expected}} \approx -4.0 \text{ meV}$ Observed splitting – off by 8%, radius off by 4%

 $\left[\Delta E_{2P-2S}^{\text{Measured}} - \Delta E_{2P-2S}^{QED}\right]^{\text{Measured}} \approx -3.7 \,\text{meV}$

What if the μ H experiment is wrong? Exp. precision: μ eV, much smaller than missing 300 μ eV; Pohl et al. and Antognini et al. measured $2P_{1/2} - 2S$ and $2P_{3/2} - 2S$ transitions, found consistency; No other facility able to redo the μ H experiment exists at the moment.

Correction 0.03 meV - 10 times smaller than the discrepancy

Proton Radius Puzzle: New Physics?

Stringent constraints from $(g-2)_e$: substantial μ -e non-universality

Proton Radius Puzzle: New Physics?

K-decay constraints

but fine tuned to evade the q-2 constraints

- Solid line is sum of scalar and pseudoscalar couplings.
- Lower mass or higher mass o.k., but 90–200 MeV excluded.
- Same for polar and axial vectors.
- Solid is one particle with both V and A couplings.
- Dashed line is two particles, one polar and one axial vector.
- Lower masses excluded, 160 MeV for PV case, 210 for other case.

Conclusion: BSM explanation possible, requires lepton non-universality,

Carlson, Rislow, '12

Further hadronic effects?

Hadronic correction at $(Z\alpha)^5$ – included partially!

Soft Coulomb: Schrödinger WF

Hard box: only part of it included (3rd Zemach m.)

Do the full calculation

Blob: forward virtual Compton tensor $T_{\mu\nu} = \frac{i}{8\pi M} \int d^4x e^{iqx} \langle p|T j_{\mu}(x)j_{\nu}(0)|p\rangle$

$$M_{2\gamma} = e^4 \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^4} \bar{u}(k) \left[\gamma^{\nu} \frac{1}{\not{k} - \not{q} - m_l + i\epsilon} \gamma^{\mu} + \gamma^{\mu} \frac{1}{\not{k} + \not{q} - m_l + i\epsilon} \gamma^{\nu} \right] u(k) T_{\mu\nu}$$

Polarizability Correction from DR

$$T_{\mu\nu} = \frac{i}{8\pi M} \int d^4x e^{iqx} \langle p|T j_{\mu}(x)j_{\nu}(0)|p\rangle$$

T-ordered non-local product of two vector currents - complicated!

Gauge, Lorentz inv. $T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu, Q^2) + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{M^2}T_2(\nu, Q^2)$

(nP - nS) splitting

$$\Delta E = -\frac{\alpha^2}{2\pi m_l M_d} \phi_n^2(0) \int d^4q \frac{(q^2 + 2\nu^2)T_1(\nu, q^2) - (q^2 - \nu^2)T_2(\nu, q^2)}{q^4[(q^2/2m_l)^2 - \nu^2]}$$

Polarizability Correction from DR

Optical theorem: absorptive part of $T_{1,2}$ related to data

Form factors

Unpolarized structure functions F_{1,2}

Dispersion relations (subtracted for T_1)

 $\operatorname{Re} T_{1}(\nu, Q^{2}) = T_{1}(0, Q^{2}) + \frac{\nu^{2}}{2\pi M} \mathcal{P} \int_{0}^{\infty} d\nu' \frac{F_{1}(\nu', Q^{2})}{\nu'(\nu'^{2} - \nu^{2})}$ $\operatorname{Re} T_{2}(\nu, Q^{2}) = \frac{1}{2\pi} \mathcal{P} \int_{0}^{\infty} d\nu' \frac{F_{2}(\nu', Q^{2})}{(\nu'^{2} - \nu^{2})}$

Polarizability Correction

Dispersion Relation + Data

Lamb shift is obtained as $\Delta E \sim \alpha_{em}^5 \int_0^\infty dQ^2 \int_0^\infty d\nu \left\{ A(\nu, Q^2) F_1 + B(\nu, Q^2) F_2 \right\}$

Good quality data (e.g., JLab) on $F_{1,2}$ O< Q^2 < 3 GeV², W< 4 GeV

Polarizability Correction

Subtraction function related to proton's magnetic polarizability β_M Low-Energy Theorem: T₁(0, Q²) = (Q²/e²) β_M

Lamb shift is obtained as $\Delta E^{Sub} \sim \alpha_{em}^5 \int_0^{\infty} dQ^2 C(Q^2) \beta_M F_\beta(Q^2)$

Subtraction Constant

PDG 2012 $\alpha_E = 11.2(0.4) \times 10^{-4} \text{fm}^3$ $\beta_M = 2.5(0.4) \times 10^{-4} \text{fm}^3$

Total polarizability correction

Different approaches to estimate $F_{\beta}(Q^2)$

Dipole (like FF): Pachucki, 1996 Pion loops: Vanderhaeghen & Carlson, 2011 HBChPT + dipole: Birse & McGovern, 2012 BChPT: Alarcón, Pascalutsa,Lenski 2014 Finite Energy Sum Rule: MG, Llanes-Estrada, Szczepaniak, 2013

Hadronic structure corrections to proton radius puzzle are constrained

$$\Delta E_{2P-2S} = -40 \pm 5 \,\mu\text{eV}$$

$$\downarrow$$

$$\Delta E_{\text{Missing}} \approx -300 \,\mu\text{eV}$$

All known constraints built in!

Exotic Hadronic Contributions?

Reasonable hadronic models

To get -300 µeV Lamb shift: need something like this

Exotic Hadronic Contributions?

Cottingham formula (p-n n

 $M_p - M_n = \frac{\alpha}{2M(2\pi)^3} \int \frac{d^4q}{q^2} \left[I^p_{\mu}(\nu, q) - I^{\mu}_{\mu}(\nu, q) \right]$

Subtraction function contribution $[M_p - M_n]^{Subt}$

$$= -\frac{\beta_{M}^{p} - \beta_{M}^{n}}{(8\pi)^{2}M} \int_{0}^{\Lambda^{2}} dQ^{2}Q^{2}F_{\beta}(Q^{2})$$

If the proton radius puzzle is due to subtraction contribution $\delta M_{em}^p \sim 600 \, MeV$

Could be purely isoscalar but... VERY unnatural! Should be seen in Deuteron (I=0)

Muonic deuterium

One further piece of information available – isotope shift: simultaneous 1S-2S splitting measurement in eH and eD $R_d^2 - R_p^2 = 3.82007(65) \,\mathrm{fm}^2$ $R_d^2 - R_p^2$ from μ H, μ D @ PSI – in agreement (preliminary) Exotic hadronic contributions excluded by this finding

Extraction from μ D relies on nuclear structure-dependent polarizability correction.

Nuclear models vs dispersion relations:

 $\Delta E_{2S}^{Nucl.} = -1.68(16) \,\mathrm{meV}$

Leidemann, '90; Pachucki '13; Ji et al, '14; Friar, '14; $\Delta E_{2S}^{DR} = -1.75(74) \text{ meV}$ Carlson, MG, Vanderhaeghen '14 A simple ansatz for F_β(Q²) used

Lacking Input to DR for μD

 $\Delta E \sim \alpha_{em}^5 \int_0^\infty dQ^2 \int_0^\infty d\nu \left\{ A(\nu, Q^2) F_1 + B(\nu, Q^2) F_2 \right\}$ All kinematics contribute to the dispersive integral; Not all of them are equally important

The bulk of the correction – quasi elastic data from $v \approx 6-10$ MeV and Q² < 0.005 GeV² – just below the kinematics of available QE data

New D(e,e')pn data down to $Q^2 = 0.002 \text{ GeV}^2 \text{ A1}@\text{MAMI}$ taken and under analysis; 2% measurement will reduce the uncertainty by a factor 2-4

Once the data are more precise: the model for $F_{\beta}(Q^2)$ will become the main limitation of the calculation

Subtraction function from finite energy sum rule

 $\operatorname{Re} T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{\nu^2}{2\pi M} \mathcal{P} \int_0^\infty d\nu' \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu^2)}$

FESR (real photons)

Nuclear photoabsorption: from v_{thr} = few MeV to v_{max} = few tens MeV; "nothing" above that until v_{π} = 150 MeV; Scale separation: $v_{max} \ll v_{\infty} \ll v_{\pi}$

Evaluate the DR at $\nu = \nu_{\infty}$ Re $T_1(\nu_{\infty}, 0) = \operatorname{Re} T_1(0, 0) + \frac{\nu_{\infty}^2}{2\pi M} \mathcal{P} \int_{\nu_{thr}}^{\infty} \frac{d\nu}{\nu(\nu^2 - \nu_{\infty}^2)} F_1(\nu, 0)$ Employ duality LEX at ν =0: nuclear Thomson term $\operatorname{Re} T_1(0, 0) = -\frac{Z^2}{4\pi M}$ LEX at ν = ν_{∞} : nucleon Thomson terms + polarizabilities $\operatorname{Re} T_1(\nu_{\infty}, 0) = -\frac{Z}{4\pi M_p} + \frac{\nu_{\infty}^2}{e^2} (Z(\alpha^p + \beta^p) + N(\alpha^n + \beta^n))$

 $\frac{\nu_{\infty}^2}{2\pi M} \mathcal{P} \int \frac{d\nu}{\nu(\nu^2 - \nu_{\infty}^2)} F_1(\nu, 0) \approx$

Work out the integral

$$= -\frac{1}{2\pi M} \int_{\nu_{thr}}^{\nu_{max}} \frac{d\nu}{\nu} F_1(\nu, 0)$$

$$= \frac{\nu_{\infty}^2}{2\pi M} \mathcal{P} \int_{\nu_{max}}^{\nu_{\pi}} \frac{d\nu}{\nu(\nu^2 - \nu_{\infty}^2)} F_1(\nu, 0)$$

$$= \frac{\nu_{\infty}^2}{2\pi M} \int_{\nu_{max}}^{\infty} \frac{d\nu}{\nu^3} F_1(\nu, 0)$$

Balance of coeffs. at $(v_{\infty})^2$:

L.H.S. $(\nu_{\infty}^{2}/e^{2})[Z(\alpha^{p}+\beta^{p})+N(\alpha^{n}+\beta^{n})]$

Baldin sum rule for nucleons:

$$\alpha_E^{p,n} + \beta_M^{p,n} = \frac{2\alpha}{M} \int\limits_{\mathcal{U}}^{\infty} \frac{d\nu}{\nu^3} F_1^{p,n}(\nu,0)$$

 $\mathcal{P}\int_{\nu_{thr}}^{\infty} \frac{d\nu}{\nu(\nu^2 - \nu_{\infty}^2)} F_1(\nu, 0) + \int_{\nu_{\pi}}^{\infty} \frac{d\nu}{\nu^3} \left[F_1(\nu, 0) - (Z + N)(ZF_1^p(\nu, 0) + NF_1^n(\nu, 0)) \right] \approx 0$

Non-interacting nucleons in the nucleus

Coeffs. at $(\nu_{\infty})^{0}$: Bethe-Levinger photonuclear sum rule

$$-\frac{Z}{4\pi M_p} = -\frac{Z^2}{4\pi M} - \frac{1}{2\pi M} \int_{\nu_{thr}}^{\nu_{max}} \frac{d\nu}{\nu} F_1(\nu, 0)$$

$$2\int_{\nu_{thr}}^{\nu_{max}} \frac{d\nu}{\nu} F_1(\nu, 0) = ZN$$

Integrated nuclear photoabsorption cross section is given by the number of "elementary" scatterers – nucleons

Thomas – Reiche – Kuhn sum rule in QM: integrated oscillator strength ~ number of oscillators

Bethe-Levinger SR: works to 10-20%

740

B. L. Berman and S. C. Fultz: Measurements of the giant dipole resonance

		100 C		σ.		
		$\sigma_{\rm int}(\gamma,{ m tot})$			$\sigma_{\rm int}[(\gamma,2n)+(\gamma,3n)]$	
Nucleus	$E_{\gamma \max}$ (MeV)	60NZ/A	$\sigma_{-1} A^{-4/3}$ (mb)	$\begin{array}{c} 0.00225 \ A^{5/3} \\ (\text{mb-MeV}^{-1}) \end{array}$	$\sigma_{\rm int}(\gamma,{ m tot})$	Reference
⁹¹ Zr	30.0	0.820	0.160	0.98	0.181	Berman et al., 1967
⁹² Zr	27.8	0.804	0.154	0.93	0.414	Berman et al., 1967
⁹³ Nb	24.3	0.967	0.186	1.12	0.209	Leprêtre et al., 1971
⁹⁴ Zr	31.1	0.813	0.160	1.01	0.547	Berman et al., 1967
¹⁰⁷ Ag	29.5	0.858	0.155	0.89	0.194	Berman et al., 1969a
115In	31.1	1.111	0.202	1.17	0.278	Fultz et al., 1969
116Sn	29.6	0.978	0.175	0.99	0.248	Fultz et al., 1969
117Sn	31.1	1.102	0.199	1.16	0.271	Fultz et al., 1969
118Sn	30.8	1.072	0.190	1.07	0.297	Fultz et al., 1969
119Sn	31.1	1.145	0.202	1.17	0.334	Fultz et al., 1969
¹²⁰ Sn	29.9	1.185	0.209	1.19	0.330	Fultz et al., 1969
¹²⁴ Sn	31.1	1.123	0.200	1.16	0.361	Fultz et al., 1969
^{127}I	29.5	0.933	0.164	0.93	0.256	Bramblett et al., 1966b
	24.9	1.074	0.201	1.18	0.196	Bergère et al., 1969
¹³³ Cs	29.5	1.026	0.182	1.04	0.257	Berman et al., 1969a
¹³⁸ Ba	27.1	1.022	0.183	1.05	0.242	Berman et al., 1970c
¹³⁹ La	24.3	0.980	0.177	1.02	0.147	Beil et al., 71
¹⁴¹ Pr	29.8	1.001	0.175	0.97	0.167	Bramblett et al., 1966b
	16.9	0.691	0.138	0.85		Beil et al., 1971
	18.1	0.678ª	0.128ª	0.75ª		Young, 1972
^{142}Nd	20.2	0.901	0.170	1.00	0.024	Carlos et al., 1971
¹⁴³ Nd	19.8	0.910	0.176	1.08	0.094	Carlos et al., 1971
144Nd	20.2	0.896	0.170	1.01	0.299	Carlos et al., 1971
¹⁴⁵ Nd	20.2	0.965	0.193	1.26	0.323	Carlos et al., 1971
146Nd	20.2	0.905	0.173	1.05	0.347	Carlos et al., 1971
¹⁴⁸ Nd	18.8	0.795	0.155	0.97	0.491	Carlos et al., 1971
¹⁵⁰ Nd	20.2	0.931	0.178	1.09	0.416	Carlos et al., 1971
¹⁵³ Eu	28.9	1.022	0.181	1.03	0.311	Berman et al., 1969b
199 L.P	28.0	0.997	0.175	1.00	0.386	Bramblett et al., 1964
	27.4	1.109	0.198	1.15	0.243	Bergère et al., 1968
160Gd	29.5	1.099	0.195	1.14	0.448	Berman <i>et al.</i> , 1969b
¹⁶⁵ Ho	28.9	1.057	0.183	1.04	0.312	Berman et al., 1969b
	26.8	1.202	0.215	1.24	0.272	Bergère et al., 1968
175Lu	23.0	0.990	0.177	1.02	0.253	Bergère et al., 1969
¹⁸¹ Ta	24.6	0.835	0.146	0.82	0.404	Bramblett et al., 1963
-	25.2	1.142	0.201	1.14	0.269	Bergère et al., 1968
186W	28.6	1.123	0.191	1.06	0.449	Berman et al. 1969b
¹⁹⁷ Au	24.7	1.045	0.179	0.98	0.262	Fultz et al., 1962h
	21:7	1,080	0 190	1 06	0.156	Vevssière $\rho t \sigma l = 1070$
206Pb	26.4	0.982	0 167	0.03	0 183	Horvey et al. 1064
. <i>D</i>	20.1	0.304	0.107	0.90	0.105	11aivey 61 ul., 1904

TABLE III. Quantities derived directly from the data—all nuclei.

Rev. Mod. Phys., Vol. 47, No. 3, July 1975

Include hadronic photoabsorption

Complication: c.s. increases at high energies

$$F_1(\nu \ge 2 \operatorname{GeV}, 0) \to F_1^R(\nu, 0) = C_M \left(\frac{\nu}{\nu_0}\right)^{\alpha_M} + C_P \left(\frac{\nu}{\nu_0}\right)^{\alpha_F}$$

 $\nu_0 \approx 1 \,\text{GeV}, \quad \alpha_M \approx 0.5, \quad \alpha_P \approx 1.09$

Build a Regge-behaved analytic function $\operatorname{Re} T_1^R(\nu, 0) = 0 + \frac{\nu^2}{2\pi M} \mathcal{P} \int_0^\infty \frac{d\nu'}{\nu'(\nu'^2 - \nu^2)} F_1^R(\nu', 0)$

Subtract Regge behavior: the integral runs up to finite energy N

$$\operatorname{Re}\left[T_{1}(\nu,0) - T_{1}^{R}(\nu,0)\right] = -\frac{Z^{2}}{4\pi M} + \frac{\nu^{2}}{2\pi M} \mathcal{P}\int_{\nu_{thr}}^{N} \frac{d\nu' [F_{1}(\nu',0) - F_{1}^{R}(\nu',0)]}{\nu'(\nu'^{2} - \nu^{2})}$$

The remaining amplitude – at most constant asymptotically The asymptotic constant – (hypothetical) J=0 fixed pole $C_{\infty} = \operatorname{Re}\left[T_{1}(\nu, 0) - T_{1}^{R}(\nu, 0)\right]_{\nu \to \infty}$

Analyticity: the J=0 pole is not a free constant

$$C_{\infty} = -\frac{Z^2}{4\pi M} - \frac{1}{2\pi M} \int_{\nu_{thr}}^{N} \frac{d\nu}{\nu} F_1(\nu, 0) + \frac{1}{2\pi M} \left[\frac{C_M}{\alpha_M} \left(\frac{N}{\nu_0} \right)^{\alpha_M} + \frac{C_P}{\alpha_P} \left(\frac{N}{\nu_0} \right)^{\alpha_P} \right]$$

Damashek and Gilman, 1969

Exact duality: integrated c.s. = integrated Regge

-> J=0 pole = Thomson term

Deviation of J=0 pole from Thomson term = duality violation

cf. Müller, Polyakov, Semenov 2015

Choose $v_{\infty} \sim \text{few GeV}(v_{\infty}) \sim N) - \text{sum of CQ Thomson terms}$

$$\operatorname{Re}\left[T_1(\nu_{\infty}, 0) - T_1^R(\nu_{\infty}, 0)\right] = -\sum_{q=u, d \in A} \frac{e_q^2}{4\pi M_q} = -\frac{3Z + 2N}{4\pi M_p} \qquad M_q \approx M_p/3$$

"Identify" meson Regge exchange as quark-antiquark exchanges

CQM sum rule
$$(Z+N)^2 + \frac{ZN}{2} = \int_{\nu_{thr}}^{\nu_{max}} \frac{d\nu}{\nu} F_1(\nu,0) - \frac{C_M}{\alpha_M} \left(\frac{\nu_{max}}{\nu_0}\right)^{\alpha_M}$$

Fit of photoabsorption data on a few selected nuclei Resonance + Regge background MG, Hobbs, Londe

MG, Hobbs, Londergan, Szczepaniak 2011

Message: duality sum rules work; Can be used for quantitative study; Precision – can be 10–20% Generalize Bethe-Levinger SR to finite Q²:

 $\operatorname{Re} T_1(\nu_{\infty}, Q^2) = \operatorname{Re} T_1(0, Q^2) - \frac{1}{2\pi M} \int \frac{d\nu}{\nu} F_1(\nu, Q^2)$

LEX at finite Q^2 : Dirac (or charge) form factor + magnetic pol.

$$T_{1}(0,Q^{2}) = -\frac{Z^{2}}{4\pi M}F_{D}^{2}(Q^{2}) + \frac{Q^{2}}{e^{2}}\beta_{M}F_{\beta}(Q^{2}) \qquad F_{\beta}(0) =$$

$$T_{1}(\nu_{\infty},Q^{2}) = -\frac{Z}{4\pi M_{p}}F_{D}^{p2}(Q^{2}) + Z\frac{Q^{2}}{e^{2}}\beta_{M}^{p}F_{\beta}^{p}(Q^{2}) - \frac{N}{4\pi M_{p}}F_{D}^{n2}(Q^{2}) + N\frac{Q^{2}}{e^{2}}\beta_{M}^{n}F_{\beta}^{n}(Q^{2}) + O(\nu_{\infty}^{2})$$

The new sum rule: the Q^2 slope of the TRK – BL sum rule

$$\beta_M = \frac{2\alpha}{M} \int_{\nu_{thr}}^{\nu_{max}} \frac{d}{d\nu} \left. \frac{d}{dQ^2} F_1(\nu, Q^2) \right|_{Q^2 \to 0}$$
$$- \frac{Z^2 \alpha R_{Ch}^2}{3M} + \frac{Z \alpha R_p^2 + N \alpha R_n^2}{3M_p} + Z \beta_M^p + N \beta_M^n$$

Can test the sum rule:

- fit the electrodisintegration data in the nuclear range;
- compare to the value of the nuclear magnetic pol. (if known)

Deuteron: β_M known theoretically

EFT (lowest order): $\beta_M^d = 0.068 \text{ fm}^2$ Potential models (LO): $\beta_M^d = 0.068 \text{ fm}^2$ Potential models (NLO): $\beta_M^d = 0.078 \text{ fm}^2$ Chen et al., 2002 Friar 1997, Khriplovich 1979, ... Friar 1997

Nucleon β_M : known and generally small (2 o.o.m.)PDG 2012 $\beta_M^p = 2.5(0.4) \cdot 10^{-4} \, \text{fm}^3, \quad \beta_M^n = 3.7(2.0) \cdot 10^{-4} \, \text{fm}^3$ ChPT $\beta_M^p = 3.9(0.7) \cdot 10^{-4} \, \text{fm}^3, \quad \beta_M^n = 4.6(2.7) \cdot 10^{-4} \, \text{fm}^3$

Hagelstein et al., arXiv:1512.03765

Charge radii known: $R_d = 2.14 \text{ fm}$, $R_p = 0.840 \text{ fm}$, $R_n^2 = -0.116 \text{ fm}^2$

Correction term:

$$-\frac{\alpha R_d^2}{3M} + \frac{\alpha R_p^2 + \alpha R_n^2}{3M_p} + \beta_M^p + \beta_M^n \approx 1 \times 10^{-5} \text{fm}^3$$

Recent deuteron data fit Carlson, MG, Vanderhaeghen, PR A89 (2014) Fit of the form $F^{QE}(v,Q^2) \cdot f^{QE}(Q^2) + F^{thr}(v,Q^2) \cdot f^{thr}(Q^2)$

0.073(5) fm³ <-> 0.096(16) fm³
1.5σ off, but in the ballpark
The problem: need to extrapolate down to Q²=0 from finite Q²; Nuclear slopes are large

Can impose the value of β_d – new fit

Fit done not using the SR

New application: He-3 ^{Carlson, MG, Vanderhaeghen, in progress} Fit of the form $F^{QE}(v,Q^2) \cdot f^{QE}(Q^2) + F^{thr}(v,Q^2) \cdot f^{thr}(Q^2)$

Sum rule prediction for the magnetic polarizability $\beta_M^{He-3} = [4.20 - 2.44 + 0.67 + 1.24] \cdot 10^{-3} \text{ fm}^3 = 3.9 \cdot 10^{-3} \text{ fm}^3$ Uncertainty? 10% from β_P and β_n ; 10% from the fit; systematics? Further generalization: the full Q^2 dependence of $\beta(Q^2)$

$$\beta_M(Q^2) = \frac{2\alpha}{M} \int_{\nu_{thr}}^{\nu_{max}} \frac{d}{d\nu} \frac{F_1(\nu, Q^2) - F_1(\nu, 0)}{Q^2}$$

Confront to the simple-minded FF-like model of our PR A89 Effect on the Lamb shift calculation Estimate w/o sum rule Estimate with sum rule

 $\Delta E_{2S}^{DR} = -1.75(74) \,\mathrm{meV}$

 $\Delta E_{2S}^{SR} = -1.94(74) \,\mathrm{meV}$

Uncertainty dominated by the dispersion integral; once more precise data allow to reduce the uncertainty – may lead to a shift in the extracted value of R_d !

Effect due to different $R_p \approx 0.38$ meV in μD ; here – 0.19 meV

Summary

- Proton radius puzzle inconsistency between the e-scattering and eH on one hand, and μ H data on the other hand.
- Each part has subtleties but no clear solution found the puzzle persists
- Scattering experiments: extrapolation issue
- Electronic hydrogen: sensitivity issue
- Muonic hydrogen: no experimental issues found to date further muonic atoms consistent with μ H (preliminary)
- SSM explanation possible but requires both lepton non-universality and fine tuning to evade known constraints from other observables

Proton Radius Puzzle: what's next?

- More precise eH experiments coming (2S-2P, 1S-3S, 2S-4S);
- e-p scattering: Q^2 down to 2×10^{-4} GeV² @ Mainz, JLab
- Deuteron radius from e-D scattering: new data at Mainz under analysis Q² > 0.002 GeV², radius under 0.25%
- To push Q² down and get the radius under 1%: improved radiative corrections (TPE) necessary. Recent works: MG '14; Tomalak, Vanderhaeghen '14, '15(2)
- Study lepton non-universality with μ-p scattering: MUSE @ PSI - elastic μ-p scattering at Q² > 0.002 GeV² (2017/18);
 γp -> μ⁺μ⁻p/γp -> e⁺e⁻p measurement may be more sensitive Pauk, Vanderhaeghen '15 - proposal under consideration in Mainz

Proton Radius Puzzle: what's next?

- Further muonic atoms: μ D, μ He-3, μ He-4 data taken at PSI, now analyzed or finalized
- μD more precise DR calculation needed: new QE data on deuteron analyzed at Mainz

 to reduce the uncertainty of dispersion integrals by factor 2-4 sum rule for the nuclear magnetic polarizability derived (MG, '15)
 to reduce model dependence of the subtraction contribution DR treatment of hyperfine splitting in μD underway
 with Carlson and Vanderhaeghen
- \square µHe-3,4 DR analysis underway (with Carlson and Vanderhaeghen) potential model calculation by Bacca and Co arXiv: 1512.05773