Duality sum rules in forward Compton scattering and the proton radius puzzle

Misha Gorshteyn

Mainz University

Theory Seminar - Institut für Theoretische Physik II, Uni Bochum - April 28, 2016

Thanks to my collaborators:

Marc Vanderhaeghen (Mainz U.)
Carl E. Carlson (College of William \& Mary)
Adam Szczepaniak (Indiana U.)
Felipe LLanes-Estrada (U. Madrid)
T. Londergan (Indiana U.)
T. Hobbs (U. Washington)

MG, Hobbs, Londergan, Szczepaniak, Phys.Rev. C84 (2011) 065202
MG, Llanes-Estrada, Szczepaniak, Phys.Rev. A87 (2013) 052501, [arXiv:1302.2807]
Carlson, MG, Vanderhaeghen, Phys.Rev. A89 (2014) 022504, [arXiv:1311.6512]
MG, Phys.Rev. C90 (2014) 052201, [arXiv:1406.1612]
MG, Phys.Rev.Lett 115 (2015) 222503, [arXiv:1508.02509]

As a motivation

Proton Radius Puzzle: the Status

Proton radius puzzle

Electron Scattering
 Hydrogen Atom
 Proton Radius

Elastic Electron Scattering

Unpolarized cross section

$$
\left(\frac{d \sigma}{d \Omega}\right)^{\text {unpol }}=\sigma_{\mathrm{Mott}} \frac{\epsilon G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)}{\epsilon(1+\tau)}
$$

Momentum Transfer $Q^{2} \rightarrow \tau=Q^{2} /\left(4 \mathrm{M}^{2}\right)$
Energy $E \rightarrow \epsilon: 0<\epsilon<1$ for $E_{\min }<E<\infty$
$G_{E, M}\left(Q^{2}\right)$ - electric and magnetic form factors

FFs encode charge, magnetic moment, RMS radii, ...

$$
\begin{gathered}
G_{E}\left(Q^{2}\right)=1-(1 / 6) R_{c h}^{2} Q^{2}+\ldots \\
G_{M}\left(Q^{2}\right)=\mu_{p}\left[1-(1 / 6) R_{M}^{2} Q^{2}+\ldots\right]
\end{gathered}
$$

Proton Radius from e-scattering

Measure cross section down to low Q^{2}

$$
\frac{d \sigma^{\exp p}}{d \Omega} /\left.\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\right|_{Q^{2} \rightarrow 0}=1+Q^{2}\left[\frac{\mu_{p}^{2}-1}{4 M^{2}}-\frac{1}{3} R_{C h}^{2}\right]+\ldots
$$

The radius is defined as the slope of the FF at origin, data are at finite Q^{2} : extrapolation is unavoidable

How low in Q^{2} should/can one go? up to now $Q_{\min ^{2}}=4 \times 10^{-3} \mathrm{GeV}^{2}$
1% uncertainty in R_{ch} - measure 1 to few $\times 10^{-4}$ precision!

Proton Radius from e-scattering

A1 @ MAMI

$R_{c h}=0.879(8)$
Bernauer et al., '10

Proton Radius from e-scattering

- Individual data points - per cent level accuracy;
- Need large angle coverage to extract the radius to 1%
- Large statistics serves as a lever arm for extracting "1" to 0.05\% precision;
- Higher Q^{2} data influence the extracted radius
- The lower in Q^{2} one goes, the lesser are higher order terms important - plans with ISR @ Mainz, PRad @ JLab, $Q^{2} \geq 10^{-4} \mathrm{GeV}^{2}$

Proton Radius from e-scattering

- Bernauer et al.: used full statistics (low and moderate Q^{2}) studied systematics due to different fit functions (polynomial, splines, dipole, double dipole etc.) χ^{2} close to 1 with 1400 d.o.f.
- Lorenz '12,13: Dispersion relation fit $G_{E, M}\left(Q^{2}\right)=\int_{4 m_{\pi}^{2}}^{\infty} \frac{d t \rho_{E, M}(t)}{t+Q^{2}}$ Model of the spectral function: 2π continuum + VDM + QCD asymptotics Radius mainly sensitive to the lowest states $(2 \pi, 3 \pi)$ which are taken as exact \rightarrow fit function might not be flexible enough, $\chi^{2}>1.1$ Consistent with previous DR fits (Höhler '76, Mergell '96, ...)

$$
R_{E}^{p}=0.84(1) \mathrm{fm}
$$

- Hill, Paz '10: Conformal mapping + Fourier series for the spectral fn.

$$
R_{E}^{p}=0.87(2) \mathrm{fm}
$$

Data tend to larger radii; Need extra input to get smaller radii

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from Lamb Shift in Hydrogen

No extrapolation problem in atoms; typical momentum transfer in H -atom:
KeV^{2} in $\mathrm{e}-\mathrm{H}, \mathrm{MeV}^{2} \mu-\mathrm{H}$

Electrons occupy stationary orbits Energy levels $E_{N L}$

Principal (energy) Q.N.: N=1,2,3...; Orbital momentum Q.N.: L=S,P,D...;

If only one photon were exchanged:

$$
E_{2 S}=E_{2 P}
$$

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from Lamb Shift in Hydrogen

Radiative corrections: level splittings!

$$
\begin{aligned}
& E_{2 S}-E_{1 S} \approx 10.2 \mathrm{eV} \\
& E_{1 S} \approx-13.6 \mathrm{eV}=-h c R_{\infty}
\end{aligned}
$$

25
nS-nP splitting (Lamb shift) - authentic prediction of SM (QED)
Precise calculations of QED corrections: p.p.m. level precision

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from Lamb Shift in Hydrogen

- The proton is not a point-like charge - has a finite size - Lamb shift is sensitive to the proton radius

$$
\Delta E_{n P-n S}=\Delta E_{n P-n S}^{Q E D}-\frac{2(Z \alpha)^{4}}{3 n^{3}} m_{r}^{3} R_{E}^{2}+\mathcal{O}\left(\alpha_{e m}^{5}\right)
$$

- few p.p.m. correction
- exceeds the QED precision
- can be extracted

$$
\begin{gathered}
E_{2 S}-E_{2 P}=33.7808(1) \mu \mathrm{eV}+0.0008 R_{E}^{p 2} \mu \mathrm{eV} \\
\text { QED } \quad \text { Finite Size }
\end{gathered}
$$

Re p from Lamb Shift in Hydrogen

CODATA $R_{c h}=0.8779(94) \mathrm{fm}$ e-scattering
$R_{c h}=0.879(8) \mathrm{fm}$

Combined

$R_{c h}=0.8775(51) \mathrm{fm}$
$\mu \mathrm{H}$ data @ PSI
$R_{E}^{p}=0.84087(39) \mathrm{fm}$

Pohl et al [CREMA Coll.] '10, Antognini et al. '13

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from Lamb Shift in Hydrogen

CODATA

 $R_{c h}=0.8779(94) \mathrm{fm}$ e-scattering $R_{c h}=0.879(8) \mathrm{fm}$
Combined

$R_{c h}=0.8775(51) \mathrm{fm}$
$\mu \mathrm{H}$ data @ PSI $R_{E}^{p}=0.84087(39) \mathrm{fm}$

Pohl et al [CREMA Coll.] '10, Antognini et al. '13 4\% discrepancy for Rch (0.6% precision from e-p) - 7σ away!

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from $\mathrm{e}-\mathrm{H}$

Almost all individual e-H points are within 1.5σ from the muonic point BUT they all lie systematically at larger radii - correlated systematics? All QED corrections have been studied up to α^{6} - under control Electron scattering is the most precise single measurement and is in nice agreement with the statistical average of the e-H data.

Most of the measurements are old - may be a good idea to remeasure New experiments with projected 1% radius extraction - under way: 2S-2P measurement - York U. (Canada); 2S-4S measurement - MPI Garching;
1S-3S measurement - Laboratoire Kastler Brossel (Paris);

What's special about $\mu-\mathrm{H}$?

QED: the only difference is the mass Hydrogen atom

Bohr radius

$$
R_{B} \sim \frac{1}{\alpha m_{r}}
$$

Fine structure constant $\alpha \approx 1 / 137$ Reduced lepton-proton mass $m_{r}=\frac{m M}{m+M}$

Finite size Lamb shift:

$$
\Delta E_{2 P-2 S}^{R_{E}^{p}} \propto \alpha^{4} m_{r}^{3}
$$

$\Delta E_{2 P-2 S}^{e H}=-8.1 \times 10^{-7} R_{E}^{2} \mathrm{meV} \quad \Delta E_{2 P-2 S}^{\mu H}=-5.2275(10) R_{E}^{2} \mathrm{meV}$ $\mu \mathrm{H}$ unstable $\left(\tau_{2 s} \sim \mu \mathrm{~s}\right)-7$ o.o.m. still make it 10 times more precise

$\mathrm{R}_{\mathrm{E}}{ }^{\mathrm{p}}$ from $\mu-\mathrm{H}$

Using the proton radius from eH and scattering, expect

$$
\left[\Delta E_{2 P-2 S}^{\text {Measured }}-\triangle E_{2 P-2 S}^{Q E D}\right]^{\text {Expected }} \approx-4.0 \mathrm{meV}
$$

Observed splitting - off by 8%, radius off by 4%

$$
\left[\Delta E_{2 P-2 S}^{\text {Measured }}-\Delta E_{2 P-2 S}^{Q E D}\right]^{\text {Measured }} \approx-3.7 \mathrm{meV}
$$

What if the $\mu \mathrm{H}$ experiment is wrong?
Exp. precision: $\mu \mathrm{eV}$, much smaller than missing $300 \mu \mathrm{eV}$; Pohl et al. and Antognini et al. measured $2 P_{1 / 2}-2 S$ and $2 P_{3 / 2}-2 S$ transitions, found consistency;
No other facility able to redo the $\mu \mathrm{H}$ experiment exists at the moment.

What has gone wrong?

QED corrections?

$\Delta E=205.0073 \mathrm{meV}$

$\Delta E=1.5081 \mathrm{meV}$

2-loop eVp

$\Delta E=0.1509 \mathrm{meV}$

Muon SE + VP $\quad \Delta E=-0.6703 \mathrm{meV}$
QED corrections up to α^{6} calculated: all $<0.005 \mathrm{meV}$
Further hadronic structure corrections - start at $(\mathrm{Z} \alpha)^{5}$ Include the third Zemach radius:

$$
\Delta E_{2 P-2 S}^{\text {Measured }}-\Delta E_{2 P-2 S}^{Q E D}=-\frac{(Z \alpha)^{4} m_{r}^{3}}{12}\left[R_{p}^{2}-\frac{Z \alpha}{2} R_{(2)}^{3}\right]
$$

Correction 0.03 meV - 10 times smaller than the discrepancy

Proton Radius Puzzle: New Physics?

- Account for all constraints!

Stringent constraints from $(\mathrm{g}-2)_{e}$: substantial μ-e non-universality

Proton Radius Puzzle: New Physics?

Attractive scenario:
scalar exchange would naturally pick up mass (Yukawa)
Tucker-Smith, Yavin '11; Batell et al, '11; Brax, Burrage '11; Rislow, Carlson '12, '14;

Would contribute to the muon a.m.m.

Muon $a_{\mu}=(\mathrm{g}-2)_{\mu} / 2$ has 2 ppm discrepancy

$$
\begin{aligned}
& a_{\mu}(\text { data })=(116592089 \pm 63) \times 10^{-11} \quad[0.5 \mathrm{ppm}], \\
& a_{\mu} \text { (thy.) }=(116591840 \pm 59) \times 10^{-11} \quad[0.5 \mathrm{ppm}] \text {, } \\
& \delta a_{\mu}=(249 \pm 87) \times 10^{-11} \quad[2.1 \mathrm{ppm} \pm 0.7 \mathrm{ppm}]
\end{aligned}
$$

Requires fine-tuned $S+P S$ or $V+A$ exchanges
Would contribute to decays $K \rightarrow \mu+$ invisible

Proton Radius Puzzle: New Physics?

Carlson, Rislow, '12

Conclusion: BSM explanation possible, requires lepton non-universality, but fine tuned to evade the g-2 constraints

Further hadronic effects?

Hadronic correction at $\left(Z_{\alpha}\right)^{5}$ - included partially!
Soft Coulomb: included in Schrödinger WF

Hard box: only part of it included
($3^{\text {rd }}$ Zemach m .)

Do the full calculation

Blob: forward virtual Compton tensor

$$
T_{\mu \nu}=\frac{i}{8 \pi M} \int d^{4} x e^{i q x}\langle p| T j_{\mu}(x) j_{\nu}(0)|p\rangle
$$

$M_{2 \gamma}=e^{4} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{4}} \bar{u}(k)\left[\gamma^{\nu} \frac{1}{k-\not q-m_{l}+i \epsilon} \gamma^{\mu}+\gamma^{\mu} \frac{1}{k+\not q-m_{l}+i \epsilon} \gamma^{\nu}\right] u(k) T_{\mu \nu}$

Polarizability Correction from DR

$$
T_{\mu \nu}=\frac{i}{8 \pi M} \int d^{4} x e^{i q x}\langle p| T j_{\mu}(x) j_{\nu}(0)|p\rangle
$$

T-ordered non-local product of two vector currents - complicated!
Gauge, Lorentz inv. $T^{\mu \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{\hat{p}^{\mu} \hat{p}^{\nu}}{M^{2}} T_{2}\left(\nu, Q^{2}\right)$
($n P$ - nS) splitting

$$
\Delta E=-\frac{\alpha^{2}}{2 \pi m_{l} M_{d}} \phi_{n}^{2}(0) \int d^{4} q \frac{\left(q^{2}+2 \nu^{2}\right) T_{1}\left(\nu, q^{2}\right)-\left(q^{2}-\nu^{2}\right) T_{2}\left(\nu, q^{2}\right)}{q^{4}\left[\left(q^{2} / 2 m_{l}\right)^{2}-\nu^{2}\right]}
$$

Polarizability Correction from DR

Optical theorem: absorptive part of $T_{1,2}$ related to data

Unpolarized
Form factors
structure functions $F_{1,2}$

Dispersion relations (subtracted for T_{1})

$$
\begin{aligned}
\operatorname{Re} T_{1}\left(\nu, Q^{2}\right) & =T_{1}\left(0, Q^{2}\right)+\frac{\nu^{2}}{2 \pi M} \mathcal{P} \int_{0}^{\infty} d \nu^{\prime} \frac{F_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime}\left(\nu^{\prime 2}-\nu^{2}\right)} \\
\operatorname{Re} T_{2}\left(\nu, Q^{2}\right) & =\frac{1}{2 \pi} \mathcal{P} \int_{0}^{\infty} d \nu^{\prime} \frac{F_{2}\left(\nu^{\prime}, Q^{2}\right)}{\left(\nu^{\prime 2}-\nu^{2}\right)}
\end{aligned}
$$

Polarizability Correction

Dispersion Relation + Data

Lamb shift is obtained as
$\Delta E \sim \alpha_{e m}^{5} \int_{0}^{\infty} d Q^{2} \int_{0}^{\infty} d \nu\left\{A\left(\nu, Q^{2}\right) F_{1}+B\left(\nu, Q^{2}\right) F_{2}\right\}$
Good quality data (e.g., JLab) on $\mathrm{F}_{1,2} 0<\mathrm{Q}^{2}<3 \mathrm{GeV}^{2}, \mathrm{~W}<4 \mathrm{GeV}$

Polarizability Correction

Subtraction function related to proton's magnetic polarizability β_{M}
Low-Energy Theorem: $T_{1}\left(0, Q^{2}\right)=\left(Q^{2} / e^{2}\right) \beta_{M}$

Lamb shift is obtained as $\Delta E^{S u b} \sim \alpha_{e m}^{5} \int_{0}^{\infty} d Q^{2} C\left(Q^{2}\right) \beta_{M} F_{\beta}\left(Q^{2}\right)$

Subtraction Constant

Proton (dipole) polarizabilities

PDG 2012

$$
\alpha_{E}=11.2(0.4) \times 10^{-4} \mathrm{fm}^{3}
$$

$$
\beta_{M}=2.5(0.4) \times 10^{-4} \mathrm{fm}^{3}
$$

Total polarizability correction

Different approaches to estimate $F_{\beta}\left(Q^{2}\right)$

Dipole (like FF): Pachucki, 1996
Pion loops: Vanderhaeghen \& Carlson, 2011
HBChPT + dipole: Birse \& McGovern, 2012
BChPT: Alarcón, Pascalutsa, Lenski 2014
Finite Energy Sum Rule: MG, Llanes-Estrada, Szczepaniak, 2013

Hadronic structure corrections to proton radius puzzle are constrained

$$
\begin{gathered}
\Delta E_{2 P-2 S}=-40 \pm 5 \mu \mathrm{eV} \\
\Delta E_{\mathrm{Missing}} \approx-300 \mu \mathrm{eV}
\end{gathered}
$$

All known constraints built in!

Exotic Hadronic Contributions?

Reasonable hadronic models

To get $-300 \mu \mathrm{eV}$ Lamb shift: need something like this

Exotic Hadronic Contributions?

Cottingham formula ($p-n$ mass difference)

$$
M_{p}-M_{n}=\frac{\alpha}{2 M(2 \pi)^{3}} \int \frac{d^{4} q}{q^{2}}\left[T_{\mu}^{p \mu}\left(\nu, q^{2}\right)-T_{\mu}^{n \mu}\left(\nu, q^{2}\right)\right.
$$

Subtraction function contribution

$$
\left[M_{p}-M_{n}\right]^{\text {Subt }}=-\frac{\beta_{M}^{p}-\beta_{M}^{n}}{(8 \pi)^{2} M} \int_{0}^{\Lambda^{2}} d Q^{2} Q^{2} F_{\beta}\left(Q^{2}\right)
$$

If the proton radius puzzle is due to subtraction contribution

$$
\delta M_{e m}^{p} \sim 600 \mathrm{MeV}
$$

Could be purely isoscalar but... VERY unnatural!
Should be seen in Deuteron ($\mathrm{I}=0$)

Muonic deuterium

One further piece of information available - isotope shift: simultaneous $15-25$ splitting measurement in eH and eD

$$
R_{d}^{2}-R_{p}^{2}=3.82007(65) \mathrm{fm}^{2}
$$

$R_{d}{ }^{2}-R_{p}{ }^{2}$ from $\mu \mathrm{H}, \mu \mathrm{D}$ @ PSI - in agreement (preliminary) Exotic hadronic contributions excluded by this finding

Extraction from $\mu \mathrm{D}$ relies on nuclear structure-dependent polarizability correction.

Nuclear models vs dispersion relations:

$$
\Delta E_{2 . S}^{N u c l .}=-1.68(16) \mathrm{meV}
$$

Leidemann, '90; Pachucki '13; Ji et al, '14; Friar, '14;
$\Delta E_{2 S}^{D R}=-1.75(74) \mathrm{meV}$
Carlson, MG, Vanderhaeghen '14
A simple ansatz for $F_{\beta}\left(Q^{2}\right)$ used

Lacking Input to $D R$ for $\mu \mathrm{D}$

$$
\Delta E \sim \alpha_{e m}^{5} \int_{0}^{\infty} d Q^{2} \int_{0}^{\infty} d \nu\left\{A\left(\nu, Q^{2}\right) F_{1}+B\left(\nu, Q^{2}\right) F_{2}\right\}
$$

All kinematics contribute to the dispersive integral;
Not all of them are equally important
The bulk of the correction - quasi elastic data from $v \approx 6-10 \mathrm{MeV}$ and $\mathrm{Q}^{2}<0.005 \mathrm{GeV}^{2}$

- just below the kinematics of available QE data

New D(e,e')pn data down to $Q^{2}=0.002 \mathrm{GeV}^{2}$ A1@MAMI taken and under analysis;
2% measurement will reduce the uncertainty by a factor 2-4
Once the data are more precise: the model for $F_{\beta}\left(Q^{2}\right)$ will become the main limitation of the calculation

Subtraction function

 from finite energy sum rule$$
\operatorname{Re} T_{1}\left(\nu, Q^{2}\right)=T_{1}\left(0, Q^{2}\right)+\frac{\nu^{2}}{2 \pi M} \mathcal{P} \int_{0}^{\infty} d \nu^{\prime} \frac{F_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime}\left(\nu^{\prime 2}-\nu^{2}\right)}
$$

FESR (real photons)

Nuclear photoabsorption: from $v_{\text {thr }}=$ few MeV to $v_{\text {max }}=$ few tens $M e V$; "nothing" above that until

$$
v_{\pi}=150 \mathrm{MeV}_{i}
$$

Scale separation:

$$
v_{\max } \ll v_{\infty} \ll v_{\pi}
$$

Evaluate the DR at $v=v_{\infty}$

$$
\operatorname{Re} T_{1}\left(\nu_{\infty}, 0\right)=\operatorname{Re} T_{1}(0,0)+\frac{\nu_{\infty}^{2}}{2 \pi M} \mathcal{P} \int_{\nu_{t h r}}^{\infty} \frac{d \nu}{\nu\left(\nu^{2}-\nu_{\infty}^{2}\right)} F_{1}(\nu, 0)
$$

Employ duality
LEX at $v=0$: nuclear Thomson term $\operatorname{Re} T_{1}(0,0)=-\frac{Z^{2}}{4 \pi M}$
LEX at $v=v_{\infty}$: nucleon Thomson terms + polarizabilities

$$
\operatorname{Re} T_{1}\left(\nu_{\infty}, 0\right)=-\frac{Z}{4 \pi M_{p}}+\frac{\nu_{\infty}^{2}}{e^{2}}\left(Z\left(\alpha^{p}+\beta^{p}\right)+N\left(\alpha^{n}+\beta^{n}\right)\right)
$$

$$
\begin{aligned}
\frac{\nu_{\infty}^{2}}{2 \pi M} \mathcal{P} \int_{\nu_{\text {thr }}}^{\infty} \frac{d \nu}{\nu\left(\nu^{2}-\nu_{\infty}^{2}\right)} F_{1}(\nu, 0) & \approx-\frac{1}{2 \pi M} \int_{\nu_{\text {thr }}}^{\nu_{\max }} \frac{d \nu}{\nu} F_{1}(\nu, 0) \\
\text { Work out the integral } & +\frac{\nu_{\infty}^{2}}{2 \pi M} \mathcal{P} \int_{\nu_{\max }}^{\nu_{\pi}} \frac{d \nu}{\nu\left(\nu^{2}-\nu_{\infty}^{2}\right)} F_{1}(\nu, 0) \\
& +\frac{\nu_{\infty}^{2}}{2 \pi M} \int_{\nu_{\pi}}^{\infty} \frac{d \nu}{\nu^{3}} F_{1}(\nu, 0)
\end{aligned}
$$

Balance of coeffs. at $\left(v_{\infty}\right)^{2}$:

$$
\text { L.H.S. } \quad\left(\nu_{\infty}^{2} / e^{2}\right)\left[Z\left(\alpha^{p}+\beta^{p}\right)+N\left(\alpha^{n}+\beta^{n}\right)\right]
$$

Baldin sum rule for nucleons: $\quad \alpha_{E}^{p, n}+\beta_{M}^{p, n}=\frac{2 \alpha}{M} \int_{\nu_{\pi}}^{\infty} \frac{d \nu}{\nu^{3}} F_{1}^{p, n}(\nu, 0)$

$$
\mathcal{P} \int_{\nu_{t h r}}^{\nu_{\pi}} \frac{d \nu}{\nu\left(\nu^{2}-\nu_{\infty}^{2}\right)} F_{1}(\nu, 0)+\int_{\nu_{\pi}}^{\infty} \frac{d \nu}{\nu^{3}}\left[F_{1}(\nu, 0)-(Z+N)\left(Z F_{1}^{p}(\nu, 0)+N F_{1}^{n}(\nu, 0)\right)\right] \approx 0
$$

Non-interacting nucleons in the nucleus

Coeffs. at $\left(v_{\infty}\right)^{0}$: Bethe-Levinger photonuclear sum rule

$$
\begin{gathered}
-\frac{Z}{4 \pi M_{p}}=-\frac{Z^{2}}{4 \pi M}-\frac{1}{2 \pi M} \int_{\nu_{t h r}}^{\nu_{\max }} \frac{d \nu}{\nu} F_{1}(\nu, 0) \\
\\
2 \int_{\nu_{\text {thr }}}^{\lim ^{2}} \frac{d \nu}{\nu} F_{1}(\nu, 0)=Z N
\end{gathered}
$$

Integrated nuclear photoabsorption cross section is given by the number of "elementary" scatterers - nucleons

Thomas - Reiche - Kuhn sum rule in QM: integrated oscillator strength \sim number of oscillators

Bethe-Levinger SR: works to 10-20\%

740 B. L. Berman and S. C. Fultz: Measurements of the giant dipole resonance
TABLE III. Quantities derived directly from the data-all nuclei

Nucleus	$\begin{aligned} & E_{Y_{\text {max }}} \\ & (\mathrm{MeV}) \end{aligned}$	$\sigma_{\text {int }}(\gamma$, tot $)$	$\begin{gathered} \sigma_{-1} A^{-4 / 3} \\ (\mathrm{mb}) \end{gathered}$	$\frac{\sigma_{-2}}{\substack{0.00225 A^{5 / 3} \\\left(\mathrm{mb}-\mathrm{MeV}^{-1}\right)}}$	$\frac{\sigma_{\text {int }}[(\gamma, 2 n)+(\gamma, 3 n)]}{\sigma_{\text {int }}(\gamma, \text { tot })}$	Reference
		$60 \mathrm{NZ} / \mathrm{A}$				
${ }^{91 \mathrm{Zr}}$	30.0	0.820	0.160	0.98	0.181	Berman et al., 1967
${ }^{92 \mathrm{Zr}}$	27.8	0.804	0.154	0.93	0.414	Berman et al., 1967
${ }^{93} \mathrm{Nb}$	24.3	0.967	0.186	1.12	0.209	Leprêtre et al., 1971
${ }^{94} \mathrm{Zr}$	31.1	0.813	0.160	1.01	0.547	Berman et al., 1967
${ }^{107} \mathrm{Ag}$	29.5	0.858	0.155	0.89	0.194	Berman et al., 1969a
${ }^{115}$ In	31.1	1.111	0.202	1.17	0.278	Fultz et al., 1969
${ }^{116} \mathrm{Sn}$	29.6	0.978	0.175	0.99	0.248	Fultz et al., 1969
${ }^{117} \mathrm{Sn}$	31.1	1.102	0.199	1.16	0.271	Fultz et al., 1969
${ }^{118} \mathrm{Sn}$	30.8	1.072	0.190	1.07	0.297	Fultz et al., 1969
${ }^{119} \mathrm{Sn}$	31.1	1.145	0.202	1.17	0.334	Fultz et al., 1969
${ }^{120} \mathrm{Sn}$	29.9	1.185	0.209	1.19	0.330	Fultz et al., 1969
${ }^{124} \mathrm{Sn}$	31.1	1.123	0.200	1.16	0.361	Fultz et al., 1969
${ }^{127}$ I	29.5	0.933	0.164	0.93	0.256	Bramblett et al., 1966b
	24.9	1.074	0.201	1.18	0.196	Bergère et al., 1969
${ }^{133} \mathrm{Cs}$	29.5	1.026	0.182	1.04	0.257	Berman et al., 1969a
${ }^{138} \mathrm{Ba}$	27.1	1.022	0.183	1.05	0.242	Berman et al., 1970c
${ }^{139} \mathrm{La}$	24.3	0.980	0.177	1.02	0.147	Beil et al., 71
${ }^{141} \mathrm{Pr}$	29.8	1.001	0.175	0.97	0.167	Bramblett et al., 1966b
	16.9	0.691	0.138	0.85		Beil et al., 1971
	18.1	$0.678{ }^{\text {a }}$	$0.128^{\text {a }}$	$0.75{ }^{\text {a }}$		Young, 1972
${ }^{142} \mathrm{Nd}$	20.2	0.901	0.170	1.00	0.024	Carlos et al., 1971
${ }^{143} \mathrm{Nd}$	19.8	0.910	0.176	1.08	0.094	Carlos et al., 1971
${ }^{144} \mathrm{Nd}$	20.2	0.896	0.170	1.01	0.299	Carlos et al., 1971
${ }^{145} \mathrm{Nd}$	20.2	0.965	0.193	1.26	0.323	Carlos et al., 1971
${ }^{146} \mathrm{Nd}$	20.2	0.905	0.173	1.05	0.347	Carlos et al., 1971
${ }^{148} \mathrm{Nd}$	18.8	0.795	0.155	0.97	0.491	Carlos et al., 1971
${ }^{150} \mathrm{Nd}$	20.2	0.931	0.178	1.09	0.416	Carlos et al., 1971
${ }^{153} \mathrm{Eu}$	28.9	1.022	0.181	1.03	0.311	Berman et al., 1969b
${ }^{159} \mathrm{~Tb}$	28.0	0.997	0.175	1.00	0.386	Bramblett et al., 1964
	27.4	1.109	0.198	1.15	0.243	Bergère et al., 1968
${ }^{160} \mathrm{Gd}$	29.5	1.099	0.195	1.14	0.448	Berman et al., 1969b
${ }^{165} \mathrm{Ho}$	28.9	1.057	0.183	1.04	0.312	Berman et al., 1969b
	26.8	1.202	0.215	1.24	0.272	Bergère et al., 1968
${ }^{176} \mathrm{Lu}$	23.0	0.990	0.177	1.02	0.253	Bergère et al., 1969
${ }^{181} \mathrm{Ta}$	24.6	0.835	0.146	0.82	0.404	Bramblett et al., 1963
	25.2	1.142	0.201	1.14	0.269	Bergère et al., 1968
${ }^{186} \mathrm{~W}$	28.6	1.123	0.191	1.06	0.449	Berman et al., 1969b
${ }^{197} \mathrm{Au}$	24.7	1.045	0.179	0.98	0.262	Fultz et al., 1962b
	21.7	1.080	0.190	1.06	0.156	Veyssière et al., 1970
${ }^{206} \mathrm{~Pb}$	26.4	0.982	0.167	0.93	0.183	Harvey et al., 1964

Include hadronic photoabsorption

Complication: c.s. increases at high energies

$$
\begin{gathered}
F_{1}(\nu \geq 2 \mathrm{GeV}, 0) \rightarrow F_{1}^{R}(\nu, 0)=C_{M}\left(\frac{\nu}{\nu_{0}}\right)^{\alpha_{M}}+C_{P}\left(\frac{\nu}{\nu_{0}}\right)^{\alpha_{P}} \\
\nu_{0} \approx 1 \mathrm{GeV}, \quad \alpha_{M} \approx 0.5, \quad \alpha_{P} \approx 1.09
\end{gathered}
$$

Build a Regge-behaved analytic function

$$
\operatorname{Re} T_{1}^{R}(\nu, 0)=0+\frac{\nu^{2}}{2 \pi M} \mathcal{P} \int_{0}^{\infty} \frac{d \nu^{\prime}}{\nu^{\prime}\left(\nu^{\prime 2}-\nu^{2}\right)} F_{1}^{R}\left(\nu^{\prime}, 0\right)
$$

Subtract Regge behavior: the integral runs up to finite energy N

$$
\operatorname{Re}\left[T_{1}(\nu, 0)-T_{1}^{R}(\nu, 0)\right]=-\frac{Z^{2}}{4 \pi M}+\frac{\nu^{2}}{2 \pi M} \mathcal{P} \int_{\nu_{t h r}}^{N} \frac{d \nu^{\prime}\left[F_{1}\left(\nu^{\prime}, 0\right)-F_{1}^{R}\left(\nu^{\prime}, 0\right)\right]}{\nu^{\prime}\left(\nu^{\prime 2}-\nu^{2}\right)}
$$

The remaining amplitude - at most constant asymptotically
The asymptotic constant - (hypothetical) J=0 fixed pole

$$
C_{\infty}=\left.\operatorname{Re}\left[T_{1}(\nu, 0)-T_{1}^{R}(\nu, 0)\right]\right|_{\nu \rightarrow \infty}
$$

Analyticity: the $\mathrm{J}=0$ pole is not a free constant

$$
C_{\infty}=-\frac{Z^{2}}{4 \pi M}-\frac{1}{2 \pi M} \int_{\nu_{t h r}}^{N} \frac{d \nu}{\nu} F_{1}(\nu, 0)+\frac{1}{2 \pi M}\left[\frac{C_{M}}{\alpha_{M}}\left(\frac{N}{\nu_{0}}\right)^{\alpha_{M}}+\frac{C_{P}}{\alpha_{P}}\left(\frac{N}{\nu_{0}}\right)^{\alpha_{P}}\right]
$$

Damashek and Gilman, 1969
Exact duality: integrated c.s. = integrated Regge
\rightarrow J=0 pole $=$ Thomson term
Deviation of $\mathrm{J}=0$ pole from Thomson term = duality violation

cf. Müller, Polyakov, Semenov 2015

Duality of resonance structure with constituent quarks

Choose v_{∞} - few GeV $\left(v_{\infty}\right.$ " $\left.\gg " N\right)$ - sum of CQ Thomson terms
$\operatorname{Re}\left[T_{1}\left(\nu_{\infty}, 0\right)-T_{1}^{R}\left(\nu_{\infty}, 0\right)\right]=-\sum_{q=u, d \in A} \frac{e_{q}^{2}}{4 \pi M_{q}}=-\frac{3 Z+2 N}{4 \pi M_{p}} \quad M_{q} \approx M_{p} / 3$
"Identify" meson Regge exchange as quark-antiquark exchanges

CQM sum rule

$$
(Z+N)^{2}+\frac{Z N}{2}=\int_{\nu_{t h r}}^{\nu_{\max }} \frac{d \nu}{\nu} F_{1}(\nu, 0)-\frac{C_{M}}{\alpha_{M}}\left(\frac{\nu_{\max }}{\nu_{0}}\right)^{\alpha_{M}}
$$

Fit of photoabsorption data on a few selected nuclei
Resonance + Regge background
MG, Hobbs, Londergan, Szczepaniak 2011

Message: duality sum rules work; Can be used for quantitative study; Precision - can be 10-20\%

Generalize Bethe-Levinger SR to finite Q^{2} :

$$
\operatorname{Re} T_{1}\left(\nu_{\infty}, Q^{2}\right)=\operatorname{Re} T_{1}\left(0, Q^{2}\right)-\frac{1}{2 \pi M} \int_{\nu_{t h r}}^{\nu_{\max }} \frac{d \nu}{\nu} F_{1}\left(\nu, Q^{2}\right)
$$

LEX at finite Q^{2} : Dirac (or charge) form factor + magnetic pol.

$$
\begin{aligned}
T_{1}\left(0, Q^{2}\right)= & -\frac{Z^{2}}{4 \pi M} F_{D}^{2}\left(Q^{2}\right)+\frac{Q^{2}}{e^{2}} \beta_{M} F_{\beta}\left(Q^{2}\right) \quad F_{\beta}(0)=1 \\
T_{1}\left(\nu_{\infty}, Q^{2}\right)= & -\frac{Z}{4 \pi M_{p}} F_{D}^{p 2}\left(Q^{2}\right)+Z \frac{Q^{2}}{e^{2}} \beta_{M}^{p} F_{\beta}^{p}\left(Q^{2}\right) \\
& -\frac{N}{4 \pi M_{p}} F_{D}^{n 2}\left(Q^{2}\right)+N \frac{Q^{2}}{e^{2}} \beta_{M}^{n} F_{\beta}^{n}\left(Q^{2}\right)+O\left(\nu_{\infty}^{2}\right)
\end{aligned}
$$

The new sum rule: the Q^{2} slope of the TRK - BL sum rule

$$
\begin{aligned}
\beta_{M} & =\left.\frac{2 \alpha}{M} \int_{\nu_{t h r}}^{\nu_{\max }} \frac{d}{d \nu} \frac{d}{d Q^{2}} F_{1}\left(\nu, Q^{2}\right)\right|_{Q^{2} \rightarrow 0} \\
& -\frac{Z^{2} \alpha R_{C h}^{2}}{3 M}+\frac{Z \alpha R_{p}^{2}+N \alpha R_{n}^{2}}{3 M_{p}}+Z \beta_{M}^{p}+N \beta_{M}^{n}
\end{aligned}
$$

Can test the sum rule:

- fit the electrodisintegration data in the nuclear range;
- compare to the value of the nuclear magnetic pol. (if known)

Deuteron: β_{M} known theoretically
EFT (lowest order): $\beta_{M}{ }^{d}=0.068 \mathrm{fm}^{2} \quad$ Chen et al., 2002
Potential models (LO): $\beta_{M}{ }^{d}=0.068 \mathrm{fm}^{2}$
Potential models (NLO): $\beta_{M}{ }^{d}=0.078 \mathrm{fm}^{2}$
Nucleon β_{M} : known and generally small (2 o.o.m.)

$$
\beta_{M}^{p}=2.5(0.4) \cdot 10^{-4} \mathrm{fm}^{3}, \quad \beta_{M}^{n}=3.7(2.0) \cdot 10^{-4} \mathrm{fm}^{3}
$$

ChPT

$$
\beta_{M}^{p}=3.9(0.7) \cdot 10^{-4} \mathrm{fm}^{3}, \quad \beta_{M}^{n}=4.6(2.7) \cdot 10^{-4} \mathrm{fm}^{3}
$$

Hagelstein et al., arXiv:1512.03765
Charge radii known: $R_{d}=2.14 \mathrm{fm}, R_{p}=0.840 \mathrm{fm}, R_{n}{ }^{2}=-0.116 \mathrm{fm}^{2}$
Correction term: $\quad-\frac{\alpha R_{d}^{2}}{3 M}+\frac{\alpha R_{p}^{2}+\alpha R_{n}^{2}}{3 M_{p}}+\beta_{M}^{p}+\beta_{M}^{n} \approx 1 \times 10^{-5} \mathrm{fm}^{3}$

Recent deuteron data fit Carlson, MG, Vanderhaeghen, PR A89 (2014)
Fit of the form $F^{Q E}\left(v, Q^{2}\right) \cdot f^{Q E}\left(Q^{2}\right)+F^{\text {thr }}\left(v, Q^{2}\right) \cdot f^{\text {thr }}\left(Q^{2}\right)$

$$
\beta_{M}=\left.\frac{2 \alpha}{M} \int_{\nu_{t h r}}^{\nu_{m a x}} \frac{d}{d \nu} \frac{d}{d Q^{2}} F_{1}\left(\nu, Q^{2}\right)\right|_{Q^{2} \rightarrow 0}
$$

$0.073(5) \mathrm{fm}^{3}\left\langle->0.096(16) \mathrm{fm}^{3}\right.$
1.5o off, but in the ballpark The problem: need to extrapolate down to $Q^{2}=0$ from finite Q^{2}; Nuclear slopes are large

Fit done not using the SR

Can impose the value of β_{d} - new fit

New application: He-3 Carlson, MG, Vanderhaeghen, in progress

Sum rule prediction for the magnetic polarizability

$$
\beta_{M}^{H e-3}=[4.20-2.44+0.67+1.24] \cdot 10^{-3} \mathrm{fm}^{3}=3.9 \cdot 10^{-3} \mathrm{fm}^{3}
$$

Uncertainty? 10% from β_{p} and $\beta_{n} ; 10 \%$ from the fit; systematics?

Further generalization: the full Q^{2} dependence of $\beta\left(Q^{2}\right)$

$$
\beta_{M}\left(Q^{2}\right)=\frac{2 \alpha}{M} \int_{\nu_{t a r}}^{\nu_{m o x}} \frac{d}{d \nu} \frac{F_{1}\left(\nu, Q^{2}\right)-F_{1}(\nu, 0)}{Q^{2}}
$$

Confront to the simple-minded FF-like model of our PR A89

Effect on the Lamb shift calculation

Estimate w/o sum rule
$\Delta E_{2 S}^{D R}=-1.75(74) \mathrm{meV}$

Estimate with sum rule
$\Delta E_{2 S}^{S R}=-1.94(74) \mathrm{meV}$

Uncertainty dominated by the dispersion integral; once more precise data allow to reduce the uncertainty may lead to a shift in the extracted value of R_{d} !

Effect due to different $R_{p} \sim 0.38 \mathrm{meV}$ in $\mu \mathrm{D}$; here -0.19 meV

Summary

- Proton radius puzzle - inconsistency between the e-scattering and eH on one hand, and $\mu \mathrm{H}$ data on the other hand.
- Each part has subtleties but no clear solution found the puzzle persists
- Scattering experiments: extrapolation issue
- Electronic hydrogen: sensitivity issue
- Muonic hydrogen: no experimental issues found to date further muonic atoms consistent with $\mu \mathrm{H}$ (preliminary)
- BSM explanation possible but requires both lepton non-universality and fine tuning to evade known constraints from other observables

Proton Radius Puzzle: what's next?

- More precise eH experiments coming (2S-2P, 1S-3S, 2S-4S);
- e-p scattering: Q^{2} down to $2 \times 10^{-4} \mathrm{GeV}^{2}$ @ Mainz, JLab
- Deuteron radius from e-D scattering: new data at Mainz under analysis $Q^{2}>0.002 \mathrm{GeV}^{2}$, radius under 0.25%
- To push Q^{2} down and get the radius under 1% : improved radiative corrections (TPE) necessary.
Recent works: MG '14; Tomalak, Vanderhaeghen '14, '15(2)
- Study lepton non-universality with μ-p scattering:

MUSE @ PSI - elastic μ-p scattering at $Q^{2}>0.002 \mathrm{GeV}^{2}(2017 / 18)$; $\gamma p \rightarrow \mu^{+} \mu^{-} p / \gamma p->e^{+} e^{-} p$ measurement may be more sensitive Pauk, Vanderhaeghen '15 - proposal under consideration in Mainz

Proton Radius Puzzle: what's next?

- Further muonic atoms: $\mu \mathrm{D}, \mu \mathrm{He}-3, \mu \mathrm{He}-4$ - data taken at PSI, now analyzed or finalized
- $\mu \mathrm{D}$ - more precise DR calculation needed: new QE data on deuteron analyzed at Mainz
- to reduce the uncertainty of dispersion integrals by factor 2-4 sum rule for the nuclear magnetic polarizability derived (MG, '15)
- to reduce model dependence of the subtraction contribution DR treatment of hyperfine splitting in $\mu \mathrm{D}$ underway
- with Carlson and Vanderhaeghen
- $\mu \mathrm{He}-3,4$ - DR analysis underway (with Carlson and Vanderhaeghen) potential model calculation by Bacca and Co arXiv: 1512.05773

