Hard electroproduction of tensor meson $f_{2}(1270)$ within QCD factorization framework

Nikolay Kivel

HELMHOLTZ

|Institut Mainz

V.Braun, N. Kivel PLB 501, 2001
V.Braun, N. Kivel, M. Strohmaier, A. Vladimirov JHEP, 2016

Outline

Introduction: theory \& existing exp. results
f2: theory \& data

Conclusions

Introduction: QCD factorisation

QCD factorization <=> effective field theory approach
Two scales: hard and soft $Q^{2} \gg \Lambda_{Q C D}^{2}$

$$
A\left(Q^{2}\right)=H\left(Q^{2}\right) * S(\Lambda)
$$

Hard part is defined by a hard subprocess $\quad p_{h} \sim Q \quad p_{h}^{2} \sim Q^{2}$

$$
H\left(Q^{2}\right)=Q^{-2 n} H_{\mathrm{LP}}\left(\ln Q^{2} / \Lambda^{2}\right)+\mathcal{O}\left(Q^{-2 n-2}\right)
$$

scaling behavior $Q^{-2 n}$
is the model independent QCD prediction (!) which can be checked by experiment

$$
H_{\mathrm{LP}}\left(\ln Q^{2} / \Lambda^{2}\right)=h_{\mathrm{LO}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{\gamma_{L O}}+h_{\mathrm{NLO}} \alpha_{s}\left(Q^{2}\right)\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{\gamma_{N L O}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

Log corrections can be computed systematicall in PQCD $\quad \alpha_{s}\left(Q^{2}\right) \sim \ln ^{-1} Q^{2} / \Lambda^{2} \ll 1$

Introduction: QCD factorisation

QCD factorization <s> effective field theory approach
Two scales: hard and soft $Q^{2} \gg \Lambda_{Q C D}^{2}$

$$
A\left(Q^{2}\right)=H\left(Q^{2}\right) * S(\Lambda)
$$

Soft part is
associated with a soft subprocess $p_{s}^{2} \sim \Lambda^{2}$
defined as a matrix element in QCD
process independent (universal)
can be estimated only in the framework of some nonperturbative approach or constrained from the experimental data

Introduction: $e^{+} e^{-}$\& gamma-gamma fusion

Budnev, Meledin, Ginsburg, Serbo 1974

single tagget experiment cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{1} \mathrm{~d} E_{2} \mathrm{~d} \cos \theta_{1}}=\frac{\alpha}{4 \pi} \frac{\left(E^{2}+E_{1}^{2}\right) N\left(E_{2}, \theta_{\mathrm{m}}\right)}{E^{2}\left(E-E_{1}\right)\left(E-E_{2}\right) \sin ^{2} \frac{1}{2} \theta_{1}}\left(\left(\sigma_{\mathrm{TT}}+\xi_{1} \sigma_{\mathrm{ST}}\right) ;\right.
$$

$$
N\left(E_{2}, \theta_{\mathrm{m}}\right)=\frac{\alpha}{\pi}\left[\frac{E^{2}+E_{2}^{2}}{E^{2}} \ln \frac{E E_{2} \theta_{\mathrm{m}}}{m_{\mathrm{e}}\left(E-E_{2}\right)}-\frac{E_{2}}{E}\right]
$$

Inłroducłion: $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

Process $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p) \quad \mathrm{J}^{\mathrm{PC}}=\mathrm{O}^{-+}, \mathrm{O}^{++}, \mathbf{2}^{++}, \ldots$

$$
m_{M} \ll Q \quad \pi^{0}, \eta, \pi \pi, f_{0}, a_{0}, f_{2}, \ldots
$$

$$
p^{2}=m_{M}^{2} \quad p^{2} \simeq 0 \quad q^{2}=-Q^{2}<0 \quad q^{\prime 2}=0
$$

Breit $\quad q^{\prime}=\frac{1}{2} Q(1,0,0,1)$
frame

$$
p=\frac{1}{2} Q(1,0,0,-1)
$$

out
Z

Inłroducłion: $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

Process $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p) \quad \mathrm{J}^{\mathrm{PC}}=\mathbf{0}^{-+}, \mathbf{0}^{++}, \mathbf{2}^{++}, \ldots$

$$
\pi^{0}, \eta, \pi \pi, f_{0}, a_{0}, f_{2}, \ldots
$$

$$
m_{M} \ll Q
$$

$$
p^{2}=m_{M}^{2} \quad p^{2} \simeq 0 \quad q^{2}=-Q^{2}<0 \quad q^{\prime 2}=0
$$

Breit $\quad q^{\prime}=\frac{1}{2} Q(1,0,0,1)$
frame

$$
p=\frac{1}{2} Q(1,0,0,-1)
$$

out
Z

Introduction: $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

Process $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

$$
q^{\prime}=\frac{1}{2} Q(1,0,0,1) \quad p=\frac{1}{2} Q(1,0,0,-1)
$$

$$
A\left[\gamma^{*} \gamma \rightarrow M\right]=\int d k \frac{\gamma^{\mu}\left(q^{\prime}+\not \not k-\not p\right) \not \not_{\gamma}}{\left(q^{\prime}+k-p\right)^{2}} \int d z e^{i(k z)}\langle M(p)| \bar{\psi}(z) \psi(0)|0\rangle
$$

the blob is soft if $\quad k \sim p \quad k^{2} \sim p^{2} \sim(k p) \sim \Lambda^{2}$

$$
\left(q^{\prime}+k-p\right)^{2}=(k-p)^{2}+2 q^{\prime}(k-p) \simeq 2 q^{\prime}(k-p) \sim Q^{2}
$$

Light-cone coordinates

$$
\begin{array}{ll}
q^{\prime}=\frac{1}{2} Q(1,0,0,1) & \bar{n}=(1,0,0,+1) \\
p=\frac{1}{2} Q(1,0,0,-1) & n=(1,0,0,-1)
\end{array}
$$

Light-cone expansion

$$
\begin{aligned}
& V=(V \bar{n}) \frac{n}{2}+(V n) \frac{\bar{n}}{2}+V_{\perp}(V n) \\
& \equiv V_{+}=V_{0}+V_{z} \\
&(V \bar{n}) \equiv V_{-}=V_{0}-V_{z}
\end{aligned}
$$

$$
\left(q^{\prime} n\right)=q_{+}^{\prime}=Q \quad(p \bar{n})=p_{-}=Q
$$

$$
\int d^{4} k F\left[k_{+}, k_{-}, k_{\perp}\right]=\frac{1}{2} \int d k_{+} d k_{-} d^{2} k_{\perp} F\left[k_{+}, k_{-}, k_{\perp}\right]
$$

Introduction: $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

Process $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

$$
q^{\prime}=Q \frac{\bar{n}}{2} \quad p=Q \frac{n}{2}
$$

$$
A\left[\gamma^{*} \gamma \rightarrow M\right]=\int d k \frac{\gamma^{\mu}\left(q^{\prime}+\not \not k-\not p\right) \not \not_{\gamma}}{\left(q^{\prime}+k-p\right)^{2}} \int d z e^{i(k z)}\langle M(p)| \bar{\psi}(z) \psi(0)|0\rangle
$$

the blob is soft if $\quad k \sim p \quad k^{2} \sim p^{2} \sim(k p) \sim \Lambda^{2}$

$$
\begin{aligned}
& \left(q^{\prime}+k-p\right)^{2}=(k-p)^{2}+2 q^{\prime}(k-p) \simeq 2 q^{\prime}(k-p) \sim Q^{2} \\
& \frac{\gamma^{\mu}\left(q^{\prime \prime}+\not k-\not p\right) \not 申_{\gamma}}{\left(q^{\prime}+k-p\right)^{2}} \simeq \frac{\gamma^{\mu}\left(q^{\prime \prime}+\frac{1}{2} \npreceq\left(k_{-}-p_{-}\right)\right) \not 申_{\gamma}}{q_{+}^{\prime}\left(k_{-}-p_{-}\right)}+\mathcal{O}(\Lambda / Q)
\end{aligned}
$$

Introduction: $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

Process $\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow M(p)$

$$
q^{\prime}=\frac{1}{2} Q(1,0,0,1) \quad p=\frac{1}{2} Q(1,0,0,-1)
$$

$$
A\left[\gamma^{*} \gamma \rightarrow M\right]=\frac{1}{2} \int d k_{-} \frac{\operatorname{Tr}\left[\hat{S}\left(k_{-} / p_{-}\right) \gamma^{\mu}\left(q^{\prime \prime}+\frac{1}{2} \nsim\left(k_{-}-p_{-}\right)\right) \not 申_{\gamma}\right]}{q_{+}^{\prime}\left(k_{-}-p_{-}\right)}
$$

The soft part is defined as light-cone matrix element

$$
\hat{S}\left(k_{-} / p_{-}\right)=\int d z_{+} e^{i k_{-} z_{+}}\langle M(p)| \bar{\psi}\left(z_{+} \bar{n}\right) \psi(0)|0\rangle
$$

Introduction: light-cone distribution amplitude

$$
\hat{S}\left(k_{-} / p_{-}\right)=\int d z_{+} e^{i k_{-} z_{+}}\langle M(p)| \bar{\psi}\left(z_{+} \bar{n}\right) \psi(0)|0\rangle
$$

Example: $\quad k_{-} / p_{-}=x \quad 0<x<1$

$$
\begin{array}{r}
-i p^{\mu} f_{\pi} \phi_{\pi}(x)=p_{-} \int d z_{+} e^{i x p_{-} z_{+}}\langle\pi(p)| \bar{\psi}\left(z_{+} \bar{n}\right) \gamma^{\mu} \gamma_{5} \psi(0)|0\rangle \\
\langle\pi(p)| \bar{\psi}\left(z_{+} \bar{n}\right) \gamma^{\mu} \gamma_{5} \psi(0)|0\rangle=-i f_{\pi} p^{\mu} \int_{0}^{1} d x e^{-i x p_{-} z_{+}} \phi_{\pi}(x) \\
\int_{0}^{1} d x \phi_{\pi}(x)=1 \quad \phi_{\pi}(1-x)=\phi_{\pi}(x) \quad\left|\bar{q} q\left({ }^{1} S_{0}\right)\right\rangle \\
\langle\pi(p)| \bar{\psi}(0)(\overleftarrow{\partial} \cdot \bar{n})^{n} \gamma^{\mu} \gamma_{5} \psi(0)|0\rangle=-i f_{\pi} p^{\mu}\left(-i p_{-}\right)^{n} \int_{0}^{1} d x x^{n} \phi_{\pi}(x)
\end{array}
$$

simplest model

$$
\phi_{\pi}(x, \mu) \simeq 6 x(1-x)+a_{2}(\mu) C_{2}^{3 / 2}(2 x-1)
$$

Introduction: data v. theory gamma-pion fF

$$
\begin{array}{cc}
Q^{2} \rightarrow \infty \\
Q^{2} F_{\gamma \pi}\left(Q^{2}\right)=\frac{\sqrt{2} f_{\pi}}{3} \int d x \frac{\phi_{\pi}(x)}{x} & Q^{2} F_{\gamma \pi}\left(Q^{2}\right) \rightarrow \sqrt{2} f_{\pi}=0.185 \mathrm{GeV}
\end{array}
$$

Theor. curves
Bakulev, Mikhailov, Stephanis 2001,2003,2004

Problems with understanding of DA shape and power corrections

Introduction: data v. theory gamma-pion fF

$Q^{2} F_{\gamma \pi}\left(Q^{2}\right)=\frac{\sqrt{2} f_{\pi}}{3} \int d x \frac{\phi_{\pi}(x)}{x}$

$$
\begin{aligned}
Q^{2} & \rightarrow \infty \\
Q^{2} F_{\gamma \pi}\left(Q^{2}\right) & \rightarrow \sqrt{2} f_{\pi}=0.185 \mathrm{GeV}
\end{aligned}
$$

BELLE 2012

Introduction: data v. theory gamma-eta ffs

$$
|\eta\rangle=\cos \varphi \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle-\sin \varphi|s \bar{s}\rangle \quad\left|\eta^{\prime}\right\rangle=\sin \varphi \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle+\cos \varphi|s \bar{s}\rangle
$$

$$
F_{\gamma \eta}\left(Q^{2}\right)=\cos \varphi F_{\gamma(u+d)}\left(Q^{2}\right)-\sin \varphi F_{\gamma s}\left(Q^{2}\right) \quad F_{\gamma \eta^{\prime}}\left(Q^{2}\right)=\sin \varphi F_{\gamma(u+d)}\left(Q^{2}\right)+\cos \varphi F_{\gamma s}\left(Q^{2}\right)
$$

Babar 2011

$$
\begin{aligned}
& \varphi=41^{o} \text { Thomas, } 2007 \\
& Q^{2} \rightarrow \infty \\
& Q^{2} F_{\gamma(u+d)}\left(Q^{2}\right) \rightarrow \frac{5}{3} \sqrt{2} f_{\pi} \\
& Q^{2} F_{\gamma \pi}\left(Q^{2}\right) \rightarrow \sqrt{2} f_{\pi}
\end{aligned}
$$

Theor. curves

Bakulev, Mikhailov, Stephanis 2003,2004

gamma-f2 fFs

$$
\gamma^{*}(q) \gamma\left(q^{\prime}\right) \rightarrow f_{2}(p) \quad \Gamma\left[f_{2}\right]=185 \mathrm{MeV} \quad \operatorname{Br}\left[f_{2} \rightarrow \pi \pi\right] \sim 85 \%
$$

Three amplitudes (FFs)

$$
\begin{gathered}
\gamma^{*}(\pm) \gamma(\pm) \rightarrow f_{2}(0) \quad \gamma^{*}(0) \gamma(\pm) \rightarrow f_{2}(\mp) \quad \gamma^{*}(\mp) \gamma(\pm) \rightarrow f_{2}(\mp 2) \\
T_{0}\left(Q^{2}\right) \quad T_{2}\left(Q^{2}\right) \\
Q^{2}=0 \quad \Gamma\left[f_{2} \rightarrow \gamma \gamma\right]=\frac{\pi \alpha^{2}}{5 m}\left(\frac{2}{3}\left|T_{0}(0)\right|^{2}+\left|T_{2}(0)\right|^{2}\right)=3.03(40) \mathrm{keV} \\
\frac{\Gamma_{\gamma \lambda}^{\Lambda=0}}{\Gamma_{\gamma \gamma}^{\Lambda=2}} \simeq(3.7 \pm 0.3) \times 10^{-2} \quad \text { Belle } 2008 \\
\left|T_{2}(0)\right| \simeq \sqrt{\frac{5 m}{\pi \alpha^{2}} \Gamma\left[f_{2} \rightarrow \gamma \gamma\right]}=339(22) \mathrm{MeV}
\end{gathered}
$$

gamma-f2 T_{0} FF

$$
T_{0}\left(Q^{2}\right) \quad \gamma^{*}(\pm) \gamma(\pm) \rightarrow f_{2}(0)
$$

$$
T_{0}\left(Q^{2}\right) \simeq\left\langle f_{q}\right\rangle \int d x \frac{\phi_{2}(x)}{x} \quad\left\langle f_{q}\right\rangle=\frac{4}{9} f_{u}(\mu)+\frac{1}{9} f_{d}(\mu)+\frac{1}{9} f_{s}(\mu)
$$

DA properties: $\quad \phi_{2}(1-x)=-\phi_{2}(x) \quad \int_{0}^{1} d x(2 x-1) \phi_{2}(x)=1$
simplest model $\quad \phi_{2}(x)=30 x(1-x)(2 x-1)$
normalization constant $\quad \frac{1}{2}\left\langle f_{2}(P, \lambda)\right| \bar{q}\left[\gamma_{\mu} i \stackrel{\leftrightarrow}{D}{ }_{\nu}+\gamma_{\nu} i \stackrel{\leftrightarrow}{D}_{\mu}\right] q|0\rangle=f_{q} m^{2} e_{\mu \nu}^{(\lambda) *}$
Aliev, Shifman 1982 (QCD SR, TM dom.)
$f_{q}(1 \mathrm{GeV})=101(10) \mathrm{MeV} \quad$ Cheng, Koike, Yang 2010 (QCD SR, TM dom.)
Terazawa, 1990/ Suzuki 1993 (TM dom.)

gamma-f2 To FF

NLO \& LLog resummation involves gluons

Gluon DA:

$$
\begin{aligned}
\left\langle f_{2}(P, \lambda)\right| G_{-\mu}^{a}\left(z_{+} \bar{n}\right) G_{-\mu}^{a}(0)|0\rangle=-2 f_{g}^{S} m^{2} e_{--}^{(\lambda)} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{S}(x) & (V n) \equiv V_{+} \\
& (V \bar{n}) \equiv V_{-}
\end{aligned}
$$

$$
\text { properties } \quad \phi_{g}^{S}(1-x)=\phi_{g}^{S}(x) \quad \int_{0}^{1} d x \phi_{g}^{S}(x)=1
$$

simplest model $\quad \phi_{g}^{S}(x)=30 x^{2}(1-x)^{2}$
normalization constant $\quad f_{g}^{S}(1 \mathrm{GeV}) \approx 0 \quad f_{g}^{S}\left(\mu^{2}=4 m_{b}^{2}\right)=(14.9 \pm 0.8) \mathrm{MeV}$ $\Upsilon(1 S) \rightarrow \gamma f_{2}$

$$
\rightarrow \overbrace{\square \sim m m}^{\rightarrow} \frac{B r\left[\Upsilon(1 S) \rightarrow \gamma f_{2}\right]}{B r\left[\Upsilon(1 S) \rightarrow e^{+} e^{-}\right]}=\frac{64 \pi}{3} \frac{\alpha_{s}^{2}\left(4 m_{b}^{2}\right)}{\alpha}\left(1-\frac{m^{2}}{M_{\Upsilon}^{2}}\right) \frac{\left[5 f_{g}^{S} / 4\right]^{2}}{m_{b}^{2}}
$$

gamma-f2 To FF

$$
\begin{array}{cc}
T_{0}=5\left\langle f_{q}\right\rangle-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\left(\frac{5}{27}\left\langle f_{q}\right\rangle+\frac{215}{27} f_{g}^{S}\right)-5 \frac{m^{2}}{Q^{2}}\left\langle f_{q}\right\rangle+T_{0}^{\mathrm{PC}}\left(Q^{2}\right) \\
\text { LO } & \text { NLO }
\end{array}
$$

DAs $\quad \phi_{2}(x)=30 x(1-x)(2 x-1) \quad \phi_{g}^{S}(x)=30 x^{2}(1-x)^{2}$

NLO Kivel, Mankiewicz, Polyakov 1999
kin. p. cor. a part of the target mass correction
soft overlap power corrections due to the overlap of the in-out wave functions (LCSR method)

gamma-f2 To FF

$$
\begin{array}{r}
T_{0}=5\left\langle f_{q}\right\rangle-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\left(\frac{5}{27}\left\langle f_{q}\right\rangle+\frac{215}{27} f_{g}^{S}\right)-5 \frac{m^{2}}{Q^{2}}\left\langle f_{q}\right\rangle+T_{0}^{\mathrm{PC}}\left(Q^{2}\right) \\
\text { soft overlap }
\end{array}
$$

$T_{0}(0) / T_{2}(0) \simeq 4 \%$
Q^{2}, GeV^{2}
data BELLE 2015
$3.5 \mathrm{GeV}^{2} \leq Q^{2} \leq 24 \mathrm{GeV}^{2}$
it seems that the value of f_{q} is overrated ...
good idea: to extract normalization from

$$
\begin{gathered}
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f_{2}+\gamma \\
q^{2} \simeq 100 \mathrm{GeV}^{2}
\end{gathered}
$$

gamma-f ${ }_{2} T_{1}$ FF

$$
T_{1}\left(Q^{2}\right) \quad \gamma^{*}(0) \gamma(\pm) \rightarrow f_{2}(\mp)
$$

$$
\left\langle f_{2}(P, \lambda)\right| \bar{\psi}\left(z_{+} \bar{n}\right) \overleftrightarrow{D} \perp \gamma-\psi(0)|0\rangle \quad\left|\bar{q} q\left({ }^{1} P_{1}\right)\right\rangle
$$

DAs of twist-3:

$$
\left\langle f_{2}(P, \lambda)\right| \bar{\psi}\left(z_{+} \bar{n}\right) G_{-\perp}\left(v z_{+} \bar{n}\right) \gamma_{-}\left(1, \gamma_{5}\right) \psi(0)|0\rangle \quad\left|\bar{q} q\left({ }^{1} S_{0}\right) g\right\rangle
$$

In the cross section contribution with $T_{1}\left(Q^{2}\right)$ is suppressed by factor $\frac{\Lambda^{2}}{Q^{2}}$

At LO there are only 2 new DAs
models

$$
\begin{aligned}
& \Phi_{3}(\alpha)=360 \alpha_{1} \alpha_{2}^{2} \alpha_{3}\left[\zeta_{3}+\frac{1}{2} \omega_{3}\left(7 \alpha_{2}-3\right)+\ldots\right] \\
& \widetilde{\Phi}_{3}(\alpha)=360 \alpha_{1} \alpha_{2}^{2} \alpha_{3}\left[0+\frac{1}{2} \widetilde{\omega}_{3}\left(\alpha_{1}-\alpha_{3}\right)+\ldots\right]
\end{aligned}
$$

$$
\mu=1 \mathrm{GeV} \quad \zeta_{3}=0.15(8) \quad \omega_{3}=-0.2(3) \quad \widetilde{\omega}_{3}=0.06(1) \quad \text { QCD sum rule estimates }
$$

gamma-f2 To FF

$$
\begin{gathered}
T_{1}\left(Q^{2}\right)=\frac{10}{3}\left\langle f_{q}\right\rangle\left[1+4 \zeta_{3}+\frac{9}{16}\left(\omega_{3}-\tilde{\omega}_{3}\right)\right] \\
\mu=1 \mathrm{GeV} \quad \zeta_{3}=0.15(8) \quad \omega_{3}=-0.2(3) \quad \widetilde{\omega}_{3}=0.06(1) \quad \text { QCD SR }
\end{gathered}
$$

data BELLE 2015
$3.5 \mathrm{GeV}^{2} \leq Q^{2} \leq 24 \mathrm{GeV}^{2}$
it seems that the value of f_{q} is overrated ...

gamma-f ${ }_{2} T_{2}$ FF

$$
T_{2}\left(Q^{2}\right) \quad \gamma^{*}(\mp) \gamma(\pm) \rightarrow f_{2}(\mp 2)
$$

gluon DA of twist-2: do not mix with quarks!
$\left|g g\left({ }^{5} S_{2}\right)\right\rangle \quad\left\langle f_{2}(P, \lambda)\right| G_{-\{\mu}^{a}\left(z_{+} \bar{n}\right) G_{-\nu\}}^{a}(0)|0\rangle=f_{g}^{T}\left[e_{\mu \nu}^{\perp}-\frac{1}{2} g_{\mu \nu}^{\perp} m^{2} e_{--}^{(\lambda)}\right] \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{T}(x)$
$\left|\bar{q} q\left({ }^{1} D_{2}\right)\right\rangle \quad\left\langle f_{2}(P, \lambda)\right| \bar{\psi}\left(z_{+} \bar{n}\right) \overleftrightarrow{D}_{\{\perp \mu} \overleftrightarrow{D}_{\perp \nu\}} \gamma_{-} \psi(0)|0\rangle \sim \frac{\Lambda^{2}}{Q^{2}} \quad$ QCD EOM $\rightarrow \phi_{q}(x)+\ldots$
properties $\quad \phi_{g}^{T}(1-x)=\phi_{g}^{T}(x) \quad \int_{0}^{1} d x \phi_{g}^{T}(x)=1$
simplest model

$$
\phi_{g}^{T}(x)=30 x^{2}(1-x)^{2}
$$

gamma-f2 T_{2} FF

$$
T_{2}\left(Q^{2}\right)=\frac{20}{3} \frac{m^{2}}{Q^{2}}\left\langle f_{q}\right\rangle+\frac{5}{3} \frac{\alpha_{s}\left(Q^{2}\right)}{\pi} f_{g}^{T}\left[1+\frac{8}{3} \lambda\left(m_{c}^{2} / Q^{2}\right)\right]
$$

$$
f_{g}^{T}=10 \pm 50 \mathrm{MeV}
$$

gamma-f2 Feff FF

$$
F_{\gamma f_{2}}^{\mathrm{eff}}\left(Q^{2}\right)=\sqrt{\frac{2}{3}\left|\frac{T_{0}\left(Q^{2}\right)}{T_{2}(0)}\right|^{2}+\frac{Q^{2} m^{2}}{\left(m^{2}+Q^{2}\right)^{2}}\left|\frac{T_{1}\left(Q^{2}\right)}{T_{2}(0)}\right|^{2}+\left|\frac{T_{2}\left(Q^{2}\right)}{T_{2}(0)}\right|^{2}}
$$

good scaling behavior for $Q^{2}>5 \mathrm{GeV}^{2}$

data BELLE 2015
$3.5 \mathrm{GeV}^{2} \leq Q^{2} \leq 24 \mathrm{GeV}^{2}$

$$
T_{0} \simeq 5\left\langle f_{q}\right\rangle-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\left(\frac{5}{27}\left\langle f_{q}\right\rangle+\frac{215}{27} f_{g}^{S}\right)
$$

$$
T_{1} \simeq \frac{10}{3}\left\langle f_{q}\right\rangle\left[1+4 \zeta_{3}+\frac{9}{16}\left(\omega_{3}-\tilde{\omega}_{3}\right)\right]
$$

$$
T_{2} \simeq \frac{5}{3} \frac{\alpha_{s}\left(Q^{2}\right)}{\pi} f_{g}^{T}\left[1+\frac{8}{3} \lambda\left(m_{c}^{2} / Q^{2}\right)\right]
$$

Conclusions

- Theory: there is no problem with factorization as expected
- One gets a direct possibility for analysis of the subleading FFs which sensitive to the higher Fock states and specific gluonic components
- The data allows to conclude that QCD scaling is observed
- It seems that there is problem with the normalization estimate in T_{0} which is about 20% overrated, but within the theor. uncertanties. This must be clarified $\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f_{2}+\gamma\right)$
- The data for the individual helicity FFs must be improved in order to perform a more quantitative theoretical analysis

Thank you!

