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Effective Field Theories

Effective Field Theory:
I low-energy theory of some "fundamental" theory

I external momenta much smaller than some high-energy scale: p � Mhep

I the S-matrix calculated in an EFT is an expansion in the powers of Q = p/Mhep

I the degrees of freedom (DOFs) 6= those of the underlying theory

I fundamental symmetries constrain the dynamics of the EFTs

I a finite number of parameters (LECs) arises at each order; their values are found by matching with the
fundamental theory or from experiment

I counting rules tell what order is to be assigned to a particular graph
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Pionless Nuclear EFT

I high momentum scale' mπ : p . mπ , E . 20 MeV for NN
I contact interactions (with derivatives) =⇒ delta-functions

= + +V

C0N
†N C2N

†∇2N

+ · · ·

C4(∇2N )†∇2N

Weinberg (1990), Kaplan, Savage, Wise (1998), Kong, Ravndal (1999), ...
Beane, Bertulani, Cohen, Hammer, Higa, Gelman, van Kolck, Phillips, Rupak, ...
reviews — Bedaque, van Kolck (2002), Epelbaum (2006)

I loops divergent (couple to arbitrary high momenta)

= + + · · ·T

I need to regularize and renormalize

I can be done along quantum field theory lines (order-by-order)
I or use a formfactor and solve the Schrödinger equation Kirscher (2009)

— potential iterated to all orders, one has to make sure higher order corrections are small!
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Aims

I build a potential model based on a pionless EFT (similar to Kirscher (2009))
I calculate NN phase shifts, NN, NNN, and NNNN binding energies

I potential model gives wave functions that can be used to calculate other observables (e.g., charge radii)

I study correlations between (some of) these observables
I investigate the regulator (cutoff) dependence and the related limitations of the approach

I we work at NNLO; the expansion parameter Q ' 1/3, hence the expected accuracy is∼ Q3 = 3%

I we can expect that denser systems are harder to describe (e.g., 4He vs. 3H or 3He)

I we can also expect that short cutoffs can cause a lot of trouble Scaldeferri (1996), Phillips (1996)

V. Lensky Light nuclei in SVM 5



NN interactions

I counting for systems with large S-wave scattering lengths

I terms up to p2:

Vij =

LO (Q−1)︷ ︸︸ ︷
C1 + C2 σi · σj +

NLO (Q0)︷ ︸︸ ︷
D1q2 + D2k2 + σi · σj

(
D3q2 + D4k2

)
+
��

���
���XXXXXXXX

1

2
D5

(
σi + σj

)
· q × k

+ D6(q · σi )(q · σj )︸ ︷︷ ︸
NNLO (Q1)

+((((
((hhhhhhD7(k · σi )(k · σj ) ,

(1)

q = pi − p′i , k = (pi + p′i )/2.
I r -space:

Vij =G(r, σ)
(

A1 + A2τi · τj

)
+ r2G(r, σ)

(
A3 + A4τi · τj

)
+
{
∇2
,G(r, σ)

}(
A5 + A6τi · τj

)
+ G(r, σ)A7

(
1− τi · τj

) [
3(r̂ · σi )(r̂ · σj )− (σi · σj )

]
,

(2)

G(r, σ) = exp
(
− 1

2
r2

σ2

)
with r = |r| ≡

∣∣∣r i − r j

∣∣∣, and Ai are linear combinations of Ci and Di .

I include the Coulomb interaction
V C

pp =
αem

r
(3)
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NNN interactions

I at LO (Q−1), there is only one NNN contact interaction Bedaque (2002), Epelbaum (2002); we choose

V LO
ijk = E1 (4)

I NLO (Q0) terms take into account the dependence on NN scattering lenghts; absorbed in the LO piece

I terms up to p2 Girlanda (2011):

Vijk =

NNLO (Q1)︷ ︸︸ ︷
q2

i

(
F1 + F2τ i · τ j + F3σi · σj + F4σi · σjτ i · τ j

)
+

((((
((((

(((
((hhhhhhhhhhhhh

[
3(qi · σi )(qi · σj )− q2

i

]
(F5 + F6τ i · τ j )

+

(((
((((

(((
((((hhhhhhhhhhhhhh

1

2
(σi + σj ) · qi × (k i − k j )(F7 + F8τ j · τ k ) +

(((
((((

(((hhhhhhhhhh
(k i · σi )(k j · σj )(F9 + F10τ i · τ j )

(5)

I non-S-wave interactions are suppressed compared to the NN case Griesshammer (2005)

I nuclei under study — 3H, 3He, 4He — are largely SU(4) symmetric with a space symmetric ground state,
hence F1...4 are equivalent, and we can choose

V NNLO
ijk = F1(q2

i + q2
j + q2

k ) . (6)
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NNN interactions

I r -space — LO+NLO NNN potential:

Vijk =

[
B1 + B2

1

σ2

(
r2
ij + r2

ik + r2
jk

)]
exp
(
−

1

2σ2

(
r2
ij + r2

ik + r2
jk

))
(7)

I CSB NNN force needed to renormalise the pp Coulomb interaction (counted as αemM/mπ ) Vanasse (2014)
I we include the Coulomb, hence we will also include the CSB NNN force:

V CSB
ppx = BCSB exp

(
−

1

2σ2

(
r2
ij + r2

ik + r2
jk

))
(8)

I changes the strength of the LO NNN interaction if any two of the interacting nucleons are protons
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Strategy

I we have seven parameters A1..7 in the NN potential and three parameters B1,2, BCSB in the NNN potential

I observables we want to fit at this order:
– NN: apn

1S0
, apn

3S1
, rpn

1S0
, rpn

3S1
, ε1

– NNN: E(3H), E(3He)

I P-wave phase shifts are of higher orders and have to be small

— constraints: Born scattering amplitude is zero at a small finite momentum k = 0.4 fm−1 in all P-waves

〈ψ1| VI=0 |ψ1〉 = 〈ψ1| VI=1 |ψ1〉 = 0 . (9)

— no tensor interaction in I = 1 state, hence all triplet P-waves are the same at this order

I strategy:
– fit NN potential to the NN data
– take B1 arbitrary, B2 fit to triton energy, BCSB fit to 3He energy

— correlation lines
I investigate how the parameters of 4He (and three-nucleon parameters other than energies) flow along these

correlation lines

I methods:
– two-body: Kohn Variational Method Kohn (1948), Miller, Jansen op de Haar (1987)
– many-body: Stochastic Variational Method Varga, Suzuki (1998)
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Stochastic Variational Method
I based on a stochastic trial algorithm
I can be expressed in a Gaussian basis
I easily scalable and accurate
I best for ground states — excited states need extra care

Hamiltonian of N nucleons

H = T + V =
N∑

i=1

p2
i

2Mi
+

N∑
i<j

Vij (r i − rj ) +
N∑

i<j<k

Vijk (r i − r j , rk − r j ) (10)

Trial function

|Ψ0〉 =
∑

i

ci |ψi 〉 =
∑

i

ci

∣∣∣∣ψαi
JJLi Si

(Ai , ui , Ki )

〉
(11)

Basis functions for the system of N nucleons:∣∣∣ψαJJz LS (A, u, K )
〉

=
∑

M,Sz

C
JJZ
LMSSz

|fKLM〉A,u
∣∣∣χαSSz

〉

〈{x}| fKLM〉A,u = fKLM ({x}, A, u) = v2K YLM (v) exp
(
−

1

2
Aij xT

i x j

)
(12)

– {x} = {x i , i = 1, . . . ,N − 1} are the Jacobi coordinates

– A is a symmetric positive-definite (N − 1)× (N − 1) matrix

– YLM (v) = vLYLM (v̂), with v =
∑

i ui x i

– the "direction vector" u =
(

ui , i = 1, . . . ,N − 1
)

encodes angular dependence of the w.f.
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Stochastic Variational Method

I we look for the lowest eigenvalue E0 of the generalised eigenvalue problem

Hij cj = ENij cj , i, j = 1, . . . ,m , (13)

where H and N are the Hamiltonian and overlap matrices in the current basis,

Hij =
〈
ψi

∣∣∣H
∣∣∣ψj

〉
, Nij =

〈
ψi

∣∣∣ ψj

〉
(14)

N is not a diagonal matrix since the basis states are not orthogonal

I in a Gaussian basis with Gaussian potentials, Hij and Nij are easily expressed algebraically via A, A−1, v ,
and other parameters of the w.f.

〈{x}| fKLM〉A,u = fKLM ({x}, A, u) = v2K YLM (v) exp
(
−

1

2
Aij xT

i x j

)
(15)

I A−1 positive definite — can be inverted efficiently (e.g., Cholesky decomposition)
I a single state is added — a very efficient method for solving the eigenvalue problem with m + 1 basis states
I efficient trial strategy: adding one state after another
I can lead to very large basis sizes — basis refinement (time to time, remove states that are less useful)

I typical times on a regular PC: 0.5..2 hours for 3N, 3..18 hours for 4N
I can be parallelized
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Two nucleons: NN potential

Vij =G(r, σ)
(

A1 + A2τi · τj

)
+ r2G(r, σ)

(
A3 + A4τi · τj

)
+
{
∇2
,G(r, σ)

}(
A5 + A6τi · τj

)
+ G(r, σ)A7

(
1− τi · τj

) [
3(r̂ · σi )(r̂ · σj )− (σi · σj )

] (16)

I solve the Lippman-Schwinger equation;
I fit Ai to the data:

apn
1S0

= −23.75 fm, apn
3S1

= 5.42 fm,

rpn
1S0

= 2.81 fm, rpn
3S1

= 1.76 fm,

ε1 = 1.1592◦ at Tlab = 10 MeV

I + the P-wave constraints
I 5 parameters, 5 numbers to fit
I works fine at soft cutoffs
I issues expected (and seen) at short cutoffs σ . 0.6 fm
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Two nucleons: phase shifts
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I shown at σ = 0.6, 0.8, 1.0, 1.2 fm, in comparison with PWA93
I works well up to Tlab ∼ 20MeV

I 3S1 phase shift is very well reproduced at all energies
I deuteron bound state is at the right position too

Range σ [fm] 0.6 0.8 1.0 1.2 exp.
Energy [MeV] −2.207 −2.207 −2.204 −2.198 −2.224

I P-wave phase shifts are well constrained (again, hints of possible issues at σ = 0.6 fm)

I 3D1 phase shift is not constrained but is small at low energies

— it works well for NN!
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Three and four nucleons: correlations

I fit B1 and B2 so that
E(3H) = −8.48 MeV

I correlation lines
I 3H is underbound by NN forces only
I different σ’s:

– very different scales of B1 and B2
– yet similar LO and NLO NNN
contributions to the g.s. energy
(below)
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I 3H – 4He correlations:
– analogy of the Tjon line

(no CSB NNN forces included yet)

I σ = 0.6 fm blows up in 4He:
– gigantic LO NNN contribution
– cancellation with NLO NNN

cannot be expected to occur!
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— σ = 0.6 fm is too short to work!
— we don’t consider it in the following
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Three and four nucleons: CSB NNN force

I no CSB NNN force included here
I both 3He and 4He are overbound (the former only

slightly)

I fit CSB NNN force to reproduce
E(3He) = −7.718 MeV

– can be done perturbatively

I 4He energy is shifted up too
– still slightly overbound
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I linear correlation between BCSB and B1
I CSB NNN force is very small (about 10% of the LO NNN force)

I 3He – 4He correlation picture is uninformative (E(3He) fixed)
I look at other observables, namely, charge radii, to identify NNN parameters that give close-to-physical results
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Three and four nucleons: charge radii

I with the SVM wave function, it is easy to calculate charge radii:

FC (q2) =
1

Z
〈+q/2| J0

em(q) |−q/2〉 , FC (q2) = 1−
q2r2

ch

6
+ . . . ; (17)

I LO (Q−0) result:

r2
ch =

1

Z
〈Ψ0|

A∑
j=1

1

2
(1 + τ3)j r2

j |Ψ0〉 + r2
p +

3

4M2
+

N

Z
r2
n (18)

Z protons and N = A− Z neutrons
rp = 0.8751 fm — proton charge radius, r2

n = −0.1161 fm2 — neutron charge radius squared

I no corrections at NLO (Q1)

I NNLO (Q2): relativistic corrections
– Foldy correction; vertices and propagators recoils
– dimensional estimate: δrch ∼ C/M ∼ 0.01 fm
– very small for the deuteron Chen (1999)
– estimated by calculating vertex recoils: δrch . 0.003 fm for 4He, even less for 3H, 3He

I two-nucleon contributions start at N3LO (Q3) Valderrama (2014)
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Three and four nucleons: charge radii correlations
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I 3H charge radius is in agreement for all NNN potentials

I 3He charge radius is somewhat larger, in particular at the point where rch(4He) = r exp
ch (4He)

I 3He discrepancy never larger than 2 std. deviations
I cutoff dependence of 3N charge radii is very small (less than 2 % effect)

I rch(4He) decreases with increasing binding energy
(as expected)

I the residual cutoff dependence of E(4He) gives an
uncertainty estimate of 0.5..1 MeV

I at the point where rch(4He) = r exp
ch (4He), alpha is

overbound by∼ 0.5 MeV
I this is about 2% of the binding energy and within the

expected uncertainty
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Summary and outlook

I model gives excellent agreement with experiment for A = 3 nuclei
I CSB NNN corrections are very small
I study of correlations:

— there is also a range of parameters where both A = 3 and A = 4 nuclei are in agreement

I short range cutoffs cause a lot of trouble, more so in denser nuclei, especially 4He

I working on heavier nuclei (parallelization is essential)

I we used SU(4) symmetry to limit the number of NNLO NNN parameters

— will not in general work for heavier nuclei

— need to study scattering of nucleons by the deuteron and A = 3 nuclei
I combine Kohn variational method and the SVM
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