Pion and rho-meson structure from Sum Rules

Pimikov Alexander

Bogoliubov Lab. Theor. Phys., JINR, Dubna, Russia

In collaboration with

- Mikhailov S., Stefanis N. (BESIII data, LCSR for TFF at low momenta)
- Oganesian A., Teryaev O., Stefanis N. (LCSR vs. Anomaly SR)
- Stefanis N.

(Pion and rho-meson twist-2 DA in QCD SR, arXiv:1506.01302)

Presented studies performed within Heisenberg–Landau project

Outline:

- Experimental background
- Factorization of Pion-Photon Transition Form Factor (TFF)
- Twist-2 pion Distribution Amplitude (DA) from QCD Sum Rules
- Light Cone Sum Rule (LCSR) results
- LCSR at low energy: applicability and uncertainties
- Anomaly SR
- The Q²-range of LCSR applicability
- Competing effects of DSEs and QCD SRs
- Chimera DAs, shorttailed platykurtic DAs of pion and rho-meson

Experiments to $e^+e^- \rightarrow e^+e^-\pi^0$

One of the **most accurate** results on exclusive reactions is provided by data on TFF $F^{\gamma^*\gamma^*\pi^0}(-Q^2 = q_1^2, q_2^2 \approx 0)$ provided by the experiments $e^+e^- \rightarrow e^+e^-\pi^0$.

CELLO (1991) $Q^2 : 0.7 - 2.2 \text{ GeV}^2$, CLEO (1998) $Q^2 : 1.6 - 8.0 \text{ GeV}^2$, agrees with collinear QCD.

BaBar (2009) $Q^2 : 4 - 40$ GeV² FF has growing tendency with Q^2 , creating the "BaBar puzzle",

Belle (2012) $Q^2 : 4 - 40$ GeV² return to collinear QCD?

BESIII (????)
$$Q^2 \le 5$$
 GeV², promises very precise data

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

CELLO and CLEO data agree well with QCD collinear factorization, [BMS2003-06] within NLO QCD⊕twist-4⊕[end-point suppressed DA]

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

If the experiment is correct, many theoretical predictions should be revised.

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

BaBar [NPBSuppl.,234,2013]: "It comes out as a surprising result that the Q^2 dependence of the non-strange TFF is in strong disagreement with the π^0 TFF."

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

BaBar [NPBSuppl.,234,2013]: "Recent Belle data is in conflict with BaBar." They do not confirm auxetic form factor behavior above 10 GeV².

Factorization of Pion-Photon Transition Form Factor

Factorization $\gamma^*(q_1)\gamma^*(q_2) \rightarrow \pi^0(P)$ in pQCD $\int d^4x e^{-iq_1\cdot z} \langle \pi^0(P)|T\{j_\mu(z)j_ u(0)\}|0 angle = i\epsilon_{\mu ulphaeta}q_1^lpha q_2^eta\cdot F^{\gamma^*\gamma^*\pi}(Q^2,q^2)\,,$ where $-q_1^2 = Q^2 > 0, \ -q_2^2 = q^2 \ge 0$ Collinear factorization at $Q^2, q^2 \gg$ (hadron scale $\sim m_{\rho}$)² for the leading twist $F^{\gamma^*\gamma^*\pi}(Q^2,q^2) = T(Q^2,q^2,\mu_F^2;x) \otimes \varphi_{\pi}(x;\mu_F^2) + O(rac{1}{O^4}),$ μ_F^2 – boundary between large scale Q^2 and hadronic one. At the parton level $Q^2F^{\gamma^*\gamma\pi}(Q^2,q^2 ightarrow 0)=rac{\sqrt{2}}{3}f_\pi\int_0^1rac{dx}{x}arphi_\pi(x)\equivrac{\sqrt{2}}{3}f_\pi\langle x^{-1} angle_\pi$

TPII, RUB, 18 June 2015

Twist 2 contributions

Collinear factorization [Efremov&Radyushkin 1978, Brodsky&Lepage 1979] $F_{tw2}^{\gamma^*\gamma^*\pi} \sim (T_0(Q^2, q^2; x) + a_s^1 T_1(Q^2, q^2; \mu_F^2; x) + a_s^2 T_2(Q^2, q^2; \mu_F^2; \mu_R^2; x) + \dots) \otimes \varphi_{\pi}^{(2)}(x; \mu_F^2)$

 T_i — hard amplitudes, calculable in pQCD, $a_s = \alpha_s (\mu_R^2)/(4\pi)$ — coupling constant. Usual setting $\mu_R^2 = \mu_F^2 = \langle Q^2 \rangle$ to simplify and minimize rad. corrections.

LO hard amplitude: $T_0(Q^2, q^2; x) = \frac{1}{x Q^2 + \bar{x} q^2}$

$$\begin{split} \mathsf{NLO:} & \ [\mathsf{Bakulev\&Mikhailov\&Stefanis(2003),Melić\&Müller\&Passek(2003)]} \\ & \ T_1 \left(x \right) \otimes \varphi \left(x \right) = T_0(Q^2,q^2;y) \otimes \left\{ C_\mathrm{F} \mathcal{T}^{(1)}(y,x) + \mathrm{L}(y) \cdot V^{(0)}(y,x) \right\} \otimes \varphi(x;\mu_F^2) \end{split}$$

NNLO hard amplitude

NNLO: $T_2 \otimes \varphi = T_0 \otimes (\beta_0 \cdot T_\beta + T_{\Delta V} + T_c) \otimes \varphi$, at $\mu_R^2 = \mu_F^2$

- β_0 -part of NNLO $\beta_0 \cdot T_\beta$: [Melić&Müller&Passek(2003)]
- $T_{\Delta V} = (V_{+}^{(1)} \beta_0 V_{\beta+}^{(1)} + \mathcal{T}^{(1)} \otimes V_{+}^{(0)} + V_{+}^{(0)} \otimes V_{+}^{(0)} \frac{L}{2})L,$ $T_0 \otimes ImT_{\Delta V}$ calculated here
- T_c unknown yet

 β_0 -term gives the sign and size of NNLO effect following to BLM prescription. $T_{\beta} = T_{\beta}^{(2)} - L \cdot T^{(1)} + L(y) \cdot V_{\beta+}^{(1)} - \frac{1}{2}L^2 \cdot V_+^{(0)}$.

 $V_{+}^{(0)}$, $V_{+}^{(1)}$ – 1- and 2-loop full ERBL-evolution kernels; $V_{\beta+}^{(1)} - \beta_0$ -part of 2-loop ERBL kernel; $\mathcal{T}^{(1)}$, $\mathcal{T}_{\beta}^{(2)}$ – 1-loop part and 2-loop β_0 -part of hard amplitude $L \equiv \ln ((Q^2y + q^2(1 - y))/\mu_F^2)$

Pion Distribution Amplitude from QCD Sum Rules

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion twist-2 DA parameterizes this matrix element

$$\left. \left< 0 | \bar{d}(z) \gamma_{\nu} \gamma_{5}[z,0] u(0) | \pi(P) \right> \right|_{z^{2}=0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \ e^{i x(zP)} \varphi_{\pi}(x,\mu^{2}) \, ,$$

where path-ordered exponential

$$[z,0] = \mathcal{P} \exp\left[ig\int_{0}^{z}t^{a}A^{a}_{\mu}(y)dy^{\mu}
ight],$$

i.e., light-like gauge link, ensures gauge invariance. It's set to 1 on account of light-cone gauge $A^+ = 0$.

Pion DA describes transition of physical pion into two valence quarks, separated by a lightlike distance on the light-cone.

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion twist-2 DA parameterizes this matrix element

 $\left. \left< 0 | \bar{d}(z) \gamma_{\nu} \gamma_{5}[z,0] u(0) | \pi(P) \right> \right|_{z^{2}=0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \ e^{i x(zP)} \varphi_{\pi}(x,\mu^{2}) \, ,$

Distribution amplitudes are nonperturbative quantities to be derived from

- QCD SR [CZ 1984], NLC QCD SR [Mikhailov&R 1986-91, Bakulev&Mikhailov&Stefanis 1998,2001–04]
- instanton-vacuum approaches, e.g.
 [Polyakov et al. 1998, 2009; Dorokhov et al. 2000,07]
- Light-front quark model [Choi&Ji 2007]
- Lattice QCD, [Braun et al. 2006,2015; Donnellan et al. 2007; Arthur et al. 2011]
- from experimental data [Schmedding&Yakovlev 2000, BMS 2003–2006, Khodjamirian et al. 2000, 2002]
- DSE approach [Roberts et al., 2014]
- AdS/QCD [Brodsky&de Teramond, 2008]

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion twist-2 DA parameterizes this matrix element

$$\left. \left< 0 \left| \bar{d}(z) \gamma_{\nu} \gamma_{5}[z,0] u(0) \left| \pi(P) \right> \right|_{z^{2}=0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \; e^{i x(zP)} \varphi_{\pi}(x,\mu^{2}) \, ,
ight.$$

Segenbauer expansion of pion DA: $\varphi_{\pi}(x, \mu^2) \Leftrightarrow a_2, a_4, ..., a_n$

 $\varphi_{\pi}(x,\mu^2) = 6x\bar{x}(1+a_2(\mu^2)C_2^{(3/2)}(x-\bar{x})+a_4(\mu^2)C_4^{(3/2)}(x-\bar{x})+\ldots)$

TPII, RUB, 18 June 2015

Pion DA from QCD SR with NLC

BMS DA model and DA "bunch" were obtained using minimal Gaussian condensate model with single nonlocality parameter $\lambda_q^2 = 0.4 \,\text{GeV}^2$.

- In Higher Gegenbauer coefficients can be put to zero $a_{n\geq 6} = 0$, negligible but with large errors.
- **●** QCD SR with NLC provides end-point suppressed pion DA with slope $\varphi'_{\pi}(0) \approx 6$ that depends on the scale behavior of quark-condensate.

Light Cone Sum Rule (LCSR)

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

▶ For $Q^2 \gg m_{\rho}^2$, $q^2 \ll m_{\rho}^2$ pQCD factorization valid only in leading twist and higher twists are important [Radyushkin–Ruskov, NPB (1996)].

PReason: if $q^2 \rightarrow 0$, one needs to take into account interaction of real photon at long distances ~ $O(1/\sqrt{q^2})$

pQCD is OK

LCSRs better applicable

$\gamma^*\gamma \rightarrow \pi$: Light-Cone Sum Rules

LCSR effectively accounts for long-distance effects of real photon using quark-hadron duality in vector channel and dispersion relation in q^2 (Balitsky et. al.-89, Khodjamirian [EJPC (1999)])

$$F_{\gamma\gamma^*\pi}(Q^2, q^2) = \int_0^{s_0} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{m_\rho^2 + q^2} e^{(m_\rho^2 - s)/M^2} ds + \int_{s_0}^{\infty} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{s + q^2} ds,$$

where $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter (0.7 – 1 GeV²). Real-photon limit $q^2 \rightarrow 0$ can be easily done.

Spectral density was calculated in QCD:

$$\rho^{\mathsf{PT}}(Q^2,s) = \frac{1}{\pi} \mathsf{Im} F^{\mathsf{PT}}_{\gamma^* \gamma^* \pi}(Q^2, -s - \imath \varepsilon) = \mathsf{Tw-2} + \mathsf{Tw-4} + \mathsf{Tw-6} + \dots,$$

where twist contributions are given in form of convolution with pion DA:

$$\mathsf{Tw-2} \sim rac{1}{\pi} \mathsf{Im}(T_{\mathsf{LO}} + T_{\mathsf{NLO}} + T_{\mathsf{NNLO}_{eta_0}} + \ldots) \otimes arphi_\pi^{\mathsf{Tw2}}(x,\mu) \, .$$

Snapshot of LCSR

Fitting π -DA (a_n)

FF Prediction

Pion-gamma transition FF data

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

Belle data do not confirm auxetic form factor behavior above 10 GeV² (except outlier at $Q^2 = 27.33$ GeV²).

Predicted FF agrees well with CELLO, CLEO, BaBar $_{Q^2 < 9 \text{ GeV}^2}$ (2009), BaBar $_{\eta'}^{\eta}$ (2011), and most Belle (2012).

Pion-gamma transition FF data

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

Belle data do not confirm auxetic form factor behavior above 10 GeV² (except outlier at $Q^2 = 27.33$ GeV²).

Predicted FF agrees well with CELLO, CLEO, BaBar_{$Q^2 < 9 \text{ GeV}^2$} (2009), BaBar $_{\eta'}^{\eta}$ (2011), and most Belle (2012).

Expected BESIII data [Denig, NPPProc, 260 (2015)]

- Data at very low momenta.
- High accuracy expected.

LCSR upgrade

 Additional NNLO term, calculated here, gives negligible contribution to FF: NNLO_{ΔV} ≪ NNLO_{β₀}.

Uncertainties of LCSR

- Most of uncertainties correlated at different momenta
- At low momentum, FF is more sensitive to Tw4,Tw6 variation rather than to DA a_n parameters
- Applicability limit 1 2 GeV²

Anomaly SR

 $\int d^4x d^4y e^{(ikx+iqy)} \langle 0|T\{J^3_{\alpha 5}(0)J_{\mu}(x)J_{\nu}(y)\}|0\rangle = T_3(k,q)k_{\nu}\varepsilon_{\alpha\mu\rho\sigma}k^{\rho}q^{\sigma}+\dots$

Anomaly SR: $\int_0^\infty ImT_3(s,Q^2)ds = \frac{1}{2\pi}N_cC$. [Horejsi&Teryaev,ZPC65-1995] Charge factor $C = 1/(3\sqrt{2})$, momentum $Q^2 = -q^2$.

Anomaly SR for FF:
$$\pi f_{\pi}F_{\pi\gamma}(Q^2) = \frac{1}{2\pi}N_cC - \int_{s_3}^{\infty}ImT_3(s,Q^2)ds$$
.
[Klopot&Oganesian&Teryaev, PRD84-2011-051901]

Applying LO result for ImT_3 one can obtain

$$F_{\pi\gamma}(Q^2) = rac{1}{2\sqrt{2}\pi^2 f_\pi} rac{s_3(Q^2)}{s_3(Q^2)+Q^2}$$

Pion duality interval (threshold) $s_3(Q^2)$ is undetermined parameter in ASR. It could be a function of momentum Q^2 .

From asymptotic limit $s_3 = 4\pi^2 f_\pi^2 \simeq 0.67$ GeV².

LCSR applicability from Anomaly SR

Green bunch — LCSR result

- Dashed line value of inverse FF from anomaly at $Q^2 = 0$.
- Solid line monopole behavior (anomaly SR) adjusted to anomaly value and asymptotic behavior.

Alternative expansion of DA

Conformal expansion:

$$arphi_{\pi}(x) = 6 x ar{x} \left[1 + a_2(\mu^2) C_2^{(3/2)}(x-ar{x}) + a_4(\mu^2) C_4^{(3/2)}(x-ar{x}) + \ldots
ight]$$

Gegenbauer- α expansion [Roberts et al.]:

$$arphi^{(lpha)}_{\pi}(x,\mu^2) = rac{(xar x)^{lpha_-}}{B(lpha_-+1,lpha_-+1)} [1+a_2^{lpha}C_2^{(lpha_-+1/2)}(x-ar x)+\ldots]$$

- Does not respect ERBL evolution equation
- Better representation for broad DAs (like DSE, AdS/QCD) because in conformal expansion > 50 terms needed.

We relate these two representations by fixing second and fourth moments:

$$(a_2, a_4) \iff (lpha_-, a_2^{lpha})$$

 $\int_0^1 dx \varphi_\pi(x, \mu^2) (1 - 2x)^n = \int_0^1 dx \varphi_\pi^{(lpha)}(x, \mu^2) (1 - 2x)^n, ext{ for } n = 2, 4.$

Parameter space comparison

TPII, RUB, 18 June 2015

Competing effects of DSE and NLC

Chimera DA

- \blacktriangle DSE-DB π DA [Chang13];
- **X** BMS π DA [BMS01];
- — platykurtic π DA [Stefanis14].

● Unlike synthetic DAs (①, ②, ③), chimera DA (♣) [SP1506.01302] combines
property of DSE and NLC SR approaches: endpoint suppression, unimodality.

Conclusions

- 1. New NNLO contributions to pion TFF were calculated within LCSR and found to be small compared to leading β_0 part of NNLO contribution.
- 2. Different sources of LCSR uncertainties were studied at low Q^2 to estimate the region of SR applicability.
- 3. At low momentum $\sim 1 \text{ GeV}^2$, TFF is more sensitive to twist-4 and twist-6 variation rather than to leading twist DA a_n parameters.
- 4. Expected BESIII data could be used to refine the twist-4 and twist-6 parameters
- 5. Assuming that anomaly SR gives reliable result at $1 2 \text{ GeV}^2$ the LCSR could be applicable down to momenta $Q^2 \sim 1.5 \text{ GeV}^2$.
- 6. Presented shorttailed platykurtic rho-meson and pion DAs are chimera DAs that at the same time include correlations induced by NLC $\lambda_q \sim 0.3$ fm and DCSB as realized in DSEs.