Nucleon Polarizabilities in Compton Scattering

Barbara Pasquini Pavia U. and INFN Pavia

low energy outgoing photon plays role of applied e.m. dipole field

POLARIZABILITIES

Real Compton Scattering:

- Virtual Compton Scattering:
 - \implies local response on a distance scale depending on Q^2

Polarizabilities in Real and Virtual Compton Scattering

What we learn about e.m. structure of the nucleon from Polarizabilities

Status of theoretical and experimental analysis

Dispersion relation formalism as a tool to extract polarizabilities from data

Static polarizabilities in Real Compton Scattering

Magnetic polarizability:

$$ec{\mu}_{induced}=etaec{B}$$

Classical extended object small dielectric and permeable sphere with radius a

$$\alpha_{E1} = \frac{\epsilon - 1}{\epsilon + 2} a^3 \qquad \qquad \beta_{M1} = \frac{\mu - 1}{\mu + 2} a^3$$

 \implies for a perfectly conducting sphere $\epsilon \to \infty$ and $\mu \to 0$

$$\alpha_{E1} = a^3 \qquad \qquad \beta_{M1} = -\frac{1}{2}a^3$$

[Jackson, 1975]

Quantum mechanical system

energy shift of the system under the influence of an external electric field

$$\Delta E = -\alpha_{em} \sum_{n>0} \frac{|\langle n|z|0\rangle|^2}{E_n - E_0} \vec{E}_0^2 = -\frac{1}{2} \alpha_{E1} \vec{E}_0^2$$

quadratic Stark effect

➡ for hydrogen atom

$$\alpha_{E1}/\text{volume} \approx \frac{1}{10}$$

pretty good conductor!

Spin independent dipole polarizabilities

 $\alpha_{E1}^{exp} = (12.1 \pm 0.3 \mp 0.4) \times 10^{-4} \text{ fm}^3$ 1000 times "stiffer" than hydrogen!

$$\beta^{exp}_{M1} = (1.6 \pm 0.4 \mp 0.4) \times 10^{-4} \text{ fm}^3$$

Paramagnetism

 $\stackrel{()}{\rightarrow} \stackrel{()}{\rightarrow} \stackrel$

 $\beta_{
m para} > 0$

Baldin Sum Rule (1960)

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\nu_{thr}}^{\infty} d\nu \; \frac{(\sigma_{1/2} + \sigma_{3/2})}{\nu^2}$$

$$\alpha_{E1} + \beta_{M1} = (13.8 \pm 0.4) \cdot 10^{-4} \text{ fm}^3$$

Compton scattering

$$\alpha_{E1} - \beta_{M1} = (10.5 \pm 0.9) \cdot 10^{-4} \text{ fm}^3$$

Olmos de Leon et al. (MAMI-TAPS), EPJ A10 (2001)

Spin polarizabilities

backward spin polarizability (unpolarized Compton scattering) $\gamma_{\pi} = \gamma_{E1E1} + \gamma_{M1M1} - \gamma_{E1M2} + \gamma_{M1E2}$

 $\gamma_{\pi} = (-38.7 \pm 1.8) \cdot 10^{-4} \text{ fm}^4$

TAPS, LARA, SENECA Schumacher, Prog. Part. Nucl. Phys. 55(2005)

How to extract the RCS polarizabilities

RCS below pion threshold

- > effects of the polarizabilities rather small (~ 10 %) below threshold
- > limitation in energy in order to apply low energy expansion (LEX)

Dispersion relation formalism allows

- \succ to check validity of LEX
- > to extract polarizabilities with a minimum of model dependence
- \succ to go to higher energies to enhance the sensitivity to polarizabilities

Dispersion Relations at fixed t

$$\mathbf{T} = \varepsilon_{\mu} \varepsilon_{\nu}^{\prime *} \sum_{i=1}^{6} A_{i}(\nu, t) O_{i}^{\mu\nu}$$

 $A_i(\nu, t)$: 6 Lorentz invariant functions of $\nu = E_\gamma + \frac{t}{4M}$ and $t = -2E'_\gamma E_\gamma (1 - \cos \theta)$

analytical functions in the complex ν plane with cuts and poles on the real axis

$$A_i(\nu, t) = A_i(-\nu, t)$$
 $A_i(\nu^*, t) = A_i^*(\nu, t)$

Unsubtracted Dispersion Relations

$$\operatorname{Re} A_{i}^{\operatorname{NB}} = \frac{2}{\pi} \int_{\nu_{thr}}^{\infty} \operatorname{Im}_{s} A_{i}(\nu' t) \frac{\nu' d\nu'}{\nu'^{2} - \nu^{2}} \quad (i = 3, 4, 5, 6)$$

$$\operatorname{Im}_{N} \int_{N}^{\gamma} \int_{N} \int_{N}^{\gamma} \int_{N} \int_{$$

input from phenomenological pion photoproduction amplitudes fitted to data and model for the two-pion contribution (suppressed for low energy RCS)

 \diamond Two amplitudes do not satisfy unsubtracted DRs \rightarrow finite energy sum rule

$$\operatorname{Re}A_{i}^{\mathrm{NB}} = \frac{2}{\pi} \int_{\nu_{thr}}^{\nu_{max}} \operatorname{Im}_{s}A_{i}(\nu't) \frac{\nu' \mathrm{d}\nu'}{\nu'^{2} - \nu^{2}} + A_{i}^{\mathrm{as}} \qquad (i = 1, 2)$$

asymptotic contribution \rightarrow meson exchange in the t-channel

L'vov, Petrun'kin, Schumacher, PRC55 (1997)

Subtracted Dispersion Relations

 $A_i(\nu, t) = A_i^s(\nu, 0) + A_i^t(0, t) + A_i(0, 0)$

subtracted dispersion relations in the s-channel

⇒ improved convergence of the integral

 $> A_i^t(0,t)$: subtracted dispersion relations in the t-channel $\gamma\gamma \to N\bar{N}$

> $A_i(0,0) = a_i \implies$ polarizabilities: free parameters fitted to data

Gorchtein, Drechsel, B.P., Vanderhaeghen, PRC61 (1999); Drechsel, B.P., Vanderhaeghen, Phys. Rep. 378(2003)

Mandelstam plane for RCS

RCS below pion threshold: fit with fixed-t DRs

Two main variants of Chiral EFT:

-Baryon Chiral Perturbation Theory (BChPT) \rightarrow expansion in q/ Λ , fully relativistic

-Heavy Baryon Chiral Perturbation Theory (HBChPT) \rightarrow expansion in q/ Λ and I/M_N non relativistic

* Inclusion of Δ as explicit degree of freedom:

- BChPT: δ - expansion: $\delta = \left(\frac{m_{\pi}}{\Delta M}, \frac{\Delta M}{\Lambda}\right)$ with $\Delta M = M_{\Delta} - M_N$ [Pascalutsa and Phillips, PRC67 (2003)]

- HBChPT: small-scale expansion (SSE) or ϵ expansion: $\epsilon = \left(\frac{m_{\pi}}{\Lambda}, \frac{p}{\Lambda}, \frac{\Delta M}{\Lambda}\right)$ [Hemmert, Holstein and Kambor, PLB395 (1997)]

Different power counting scheme

* Unknown LECs enter in the polarizabilities at NLO \rightarrow parameters to fit to RCS data

Global Fit using BChPT with Δ

EFTs versus DRs

Fit to UNPOLARIZED cross section \rightarrow sensitivity to $\alpha_{E1} - \beta_{M1}$ and $\alpha_{E1} + \beta_{M1}$

Heavy Baryon ChPT [Beane, Malheiro, McGovern, Phillips, van Kolck, NPA747 (2005)]

Baryon ChPT with Δ [Lensky and Pascalutsa, EPJC65 (2010)]

Partially Covariant Baryon ChPT with Δ [McGovern, Phillips, Griesshammer, EPJA49 (2013)]

how to obtain more accurate values for scalar polarizabilities?

* combination of cross sections with linearly pol. photons in the transverse direction to the photon momentum \implies independent extraction of α_{E1} and β_{M1}

Proposal of measurements for the neutron at HIgS and for the proton at MAMI MAMI proposal: A2/06-2012

Spin Polarizabilities

	HB ³	HB ⁴	SSE	LC ³	$LC^3 + \Delta$	LC⁴	DRs	Exp.
γ _{ειει}	-5.7	-1.4	-5.4	-3.3	-4.5	-2.8	-4.3	no data
γμιμι	-1.1	3.3	1.4	-0.1	3.7	-3.I	2.9	no data
γ _{ΕΙΜ2}	1.1	0.2	1.0	0.5	-0.9	0.8	0.0	no data
γ _{ΜΙΕ2}	1.1	1.8	1.0	0.8	2.2	0.3	2.1	no data
Ŷο	4.6	-3.9	2.0	1.8	-0.7	4.8	-0.7	-0.9 ± 0.08 ± 0.11
γ_{π}	4.6	6.3	6.8	3.5	11.3	-0.8	9.3	8.0 ± 1.8

HB³: Heavy Baryon ChPT at O(p³) [Hemmert et al, 1998]

- HB⁴: Heavy Baryon ChPT at O(p⁴) [Kumar et al, 2000]
- SSE: Heavy Baryon with Δ at O(p³) [Hemmert et al, 1998]
- LC³⁺ Δ : [Lensky, Pascalutsa, EPJC (2010); Lensky, Pascalutsa, to be published]
- LC⁴: Lorentz covariant ChPT [Djukanovic, PhD Thesis, Mainz, 2008]

DRs: Dispersion Relations [Drechsel et al., 2003]

** values WITHOUT pion-pole contribution

Spin Polarizabilities from

Double and single polarization experiments at MAMI

(MAMI proposal A2/11-2009)

> leading spin polarizabilities are treated as free parameters

- $\succ \alpha_{E1}$ and β_{M1} are fixed to central exp. value
- higher-order polarizabilities are fixed by subtracted dispersion relations based on pion-photoproduction multipoles

cross-check with alternative models

* solid curves: unitary and casual effective field theory based on chiral Lagrangian

- ----> parameters fitted to pion-photoproduction multipoles
- description of pion-photoproduction and Compton scattering up to W=1.3 GeV [Gasparyan, Lutz, NPA848 (2010); Gasparyan, Lutz, BP, Nucl.Phys.A866(2011)]
- * dashed curves: dispersion relations using the same values for polarizabilities

difference between dashed and solid curves due to higher-order terms

Virtual Compton Scattering on proton

low energy outgoing photon plays role of applied e.m. dipole field

nucleon response :

Guichon et al. (1995)

Generalized Polarizabilities (GPs)

Drechsel et al. (1998)

 $\alpha(Q^2)$, $\beta(Q^2)$, and 4 spin GPs describe the spatial distributions of induced polarizations

 $e p \longrightarrow e' p \gamma$

$$T^{\mathrm{ep}\to\mathrm{e}'\mathrm{p}\gamma} = T^{\mathrm{BH}} + T^{\mathrm{VCS}}$$

 \succ Multipole expansion of T_{NB}

 ρ, ρ' $\begin{cases}
2 Coulomb \\
I Magnetic \\
0 Electric
\end{cases}$

Angular momentum conservation: $|L-L'| \le S \le L+L'$

Parity conservation: $(-1)^{L+\rho} = (-1)^{L'+\rho'}$

Generalized Polarizabilities (GPs)

(using charge conjugation and nucleon crossing symmetry)

final γ	initial γ^*	S	Ρ ^{(ρ'L',ρ L)S}	RCS limit
EI	CI	0	P ^{(01,01)0}	α
	CI		P ^{(01,01)1}	0
	M2		P ^{(01,12)1}	γ _{ειм2}
MI	MI	0	P ^{(11,11)0}	β
	MI		P ^{(11,11)1}	0
	E2		P ^{(11,02)1}	Υ _{ΜΙΕ2}

2 scalar GPs + 4 spin GPS

✤ LEX

- o expansion in q '
- o valid only at low energies (below pion threshold)
- o extraction of structure functions which contain linear combinations of 6 GPs
 - \longrightarrow model input for the spin-flip GPs to isolate $\alpha(Q^2)$ and $\beta(Q^2)$

✤ DR

- o full energy dependence
- o valid below and above pion threshold
- ⇒ consistency check of LEX below pion threshold it allows to go at higher energies where the effects of GPs are enhanced
- o direct extraction of $\alpha(\mbox{Q}^2)$ and $\beta(\mbox{Q}^2)$

The Unpolarized VCS experiments in the World

	Q ² (GeV ²)	8	Method of analysis	Roche, et al, PRL 85 (2000)
MAMI-AI-I	0.33	0.62	LEX	
JLab E93050	0.9, 1.8	0.95, 0.88	LEX and DRs	Laveissiere, et al, PRL 93 (2004)
Bates E9703	0.057	0.90	LEX and DRs	Bourgeois et al., PRL97 (2006)
MAMI-AI-2	0.33	0.48	DRs	Bensafa et al., EPJA32 (2007)
MAMI-AI-3	0.33	0.64	LEX	Janssens et al., EPJA37 (2008)

Low Energy Expansion (below π threshold)

Low energy expansion in q'

$$d^{5}\sigma^{e\,p\to e'\,p'\,\gamma}(q,q',\theta,\epsilon,\phi) = d^{5}\sigma^{\mathrm{BH}+\mathrm{Born}} + q'\,\Phi\,\Psi_{0}(q,\theta,\epsilon,\phi) + \mathcal{O}(q'^{2})$$

$$\Psi_0(q,\theta,\epsilon,\phi) = v_1(\theta,\phi) \left[P_{LL}(Q^2) - \frac{1}{\epsilon} P_{TT} \right] + v_2(\theta,\phi) P_{LT}(Q^2)$$

unpolarized experiment linear combinations of 6 GPs

The VCS Structure Functions

Measured ep \rightarrow e'p γ cross sections at MAMI below threshold

LEX analysis at MAMI

Analogous analysis at JLab and MIT-Bates

Results for Structure Funtions

Dispersion Relations

***** VCS described in terms of 12 Lorentz invariant amplitudes F_i (ν , t, Q^2)

 \clubsuit unsubtracted dispersion relations in the s-channel at fixed t and Q^2

$$\operatorname{Re}F_{i}^{\operatorname{NB}}(Q^{2},\nu,t) = \frac{2}{\pi}\mathcal{P}\int_{\nu_{thr}}^{\infty} \operatorname{Im}F_{i}^{\operatorname{NB}}(Q^{2},\nu',t)\frac{\nu'\,\mathrm{d}\nu'}{\nu'^{2}-\nu^{2}}$$

 $\operatorname{Im} F_i \Longrightarrow \gamma^* N \to \pi N \text{ from MAID}$

MAID: Drechsel, Hanstein, Kamalov, Tiator, NPA 645 (1999)

 \bullet two amplitudes do not satisfy unsubtracted DRs \rightarrow finite energy sum rule

$$\operatorname{Re}F_{i}^{\operatorname{NB}}(Q^{2},\nu,t) = \frac{2}{\pi} \operatorname{P}\int_{\nu_{thr}}^{\nu_{max}} \operatorname{Im}_{s} F_{i}(Q^{2},\nu',t) \frac{\nu' \mathrm{d}\nu'}{\nu'^{2}-\nu^{2}} + F_{i}^{\operatorname{as}}(Q^{2},\nu,t)$$

asymptotic parts contain free parameters fitted to data at fixed Q² $\alpha(Q^2) = \alpha^{\text{DISP}}(Q^2) + \alpha^{\text{ASY}}(Q^2) \qquad \beta(Q^2) = \beta^{\text{disp}}(Q^2) + \beta^{\text{ASY}}(Q^2)$

Mandelstam plane for RCS

-0.5

100 200

100 200

q '_{c.m.} (MeV/c)

100 200

100 200

scalar electric and magnetic GPs

World data on proton

Generalized Polarizabilities (GPs)

Induced polarization in proton

 $\boldsymbol{\nu} = q \cdot P/M$ $\boldsymbol{\tau} = Q^2/(4M^2)$

light-front

$$H^{\mu\nu} = -i \int d^4x \, e^{-iq \cdot x} \langle p', \, \lambda'_N | T[J^{\mu}(x), \, J^{\nu}(0)] | p, \, \lambda_N \rangle$$

 \bigstar density interpretation : consider process in light-front frame

+ component of virtual photon \implies VCS tensor $H^{+\nu}$

$$\bigstar \text{ quasi-static electric field } \vec{E} \sim iq'^0 \vec{\varepsilon}'_{\perp} = i \frac{\nu}{(1+\tau)} \frac{P^+}{M} \vec{\varepsilon}'_{\perp}$$

 \bigstar induced dipole moment minimizes energy $-\vec{E}\cdot\vec{P}_0$

 $\bigstar \text{ linear response in } \circ \vec{\varepsilon}_{\perp}^{\prime*} \cdot \vec{P}_{0} \equiv \varepsilon_{\nu}^{\prime*} \frac{(1+\tau)}{(2P^{+})} \frac{\partial H^{+\nu}}{\partial \nu}|_{\nu=0} + \text{ component } \varepsilon_{\nu}^{\prime*} \frac{\partial H^{+\nu}}{\partial \nu}|_{\nu=0}$

induced polarization in proton with definite helicity

$$\vec{P}_{0}(\vec{b}) = \int \frac{d^{2}\vec{q}_{\perp}}{(2\pi)^{2}} e^{-i\vec{q}\cdot\vec{b}_{\perp}} \vec{P}_{0}(\vec{q}_{\perp})$$
$$= \hat{b} \int_{0}^{\infty} \frac{dQ}{(2\pi)} QJ_{1}(bQ)A(Q^{2})$$

A expressed in terms of GPs : mainly α and β

induced polarization in proton with **transverse spin**

$$\begin{split} \vec{P}_{T}(\vec{b}) &- \vec{P}_{0}(\vec{b}) = \\ &-\vec{b} \left(\vec{S}_{\perp} \times \vec{\varepsilon}_{z}'\right) \cdot \vec{b} \int_{0}^{\infty} \frac{dQ}{(2\pi)} Q J_{2}(bQ) B(Q^{2}) \\ &+ \left(\vec{S}_{\perp} \times \vec{\varepsilon}_{z}'\right) \int_{0}^{\infty} \frac{dQ}{(2\pi)} Q \left[J_{0}(bQ) C(Q^{2}) + \frac{J_{1}(bq)}{bQ} B(Q^{2})\right] \end{split}$$

B and C expressed in terms of GPs : include spin GPs

[Gorchtein, Lorcé, Pasquini,Vdh , PRL(2009)]

0.5

1.0

0.0

 $b_x [fm]$

-0.5

-1.0

-1.0

-0.5

- Nucleon polarizabilities to learn about e.m. response of the internal degrees of freedom of the nucleon under the influence of a quasistatic e.m. field
- Dispersion Relation formalism and EFTs as powerful and complementary tools to extract polarizabilities from data
- ◆ Planned extractions at MAMI and HIGS of scalar polarizabilities using linearly polarized photons
 → allows first ever independent extraction of \$\alpha_{E1}\$ and \$\beta_{M1}\$
- New double polarization experiments for RCS at MAMI and HIGS will give first results for spin polarizabilities in RCS
- Planned VCS experiments at MAMI to learn about the GPs in the intermediate Q² region mapping in the coordinate space of the deformation induced in the charge and magnetization densities of the proton in the presence of an external e.m. field

Compton scattering off Protons and Light Nuclei: pinning down the nucleon polarizabilities

29 July - 2 August

www.ectstar.eu

Organizers: E. Downie, H. Fonvieille, V. Pascalutsa, B. Pasquini

We hope to see you in Trento!

Backup slides

Contribution to structure functions from spin-dependent GPs

Dependence on the proton em form factors

Measured ep \rightarrow e'p γ cross sections below threshold

Fit of the VCS structure functions

LEX analysis

$$(\mathrm{d}\sigma_{\mathrm{exp}} - \mathrm{d}\sigma_{\mathrm{BH+Born}})/\Phi/v_2 = P_{LT} + v_1/v_2(P_{LL} - P_{TT}/\epsilon)$$

Asymptotic behavior

$$\mathrm{Re}F_{i}^{\mathrm{NB}}(Q^{2},\nu,t) = \frac{2}{\pi}\mathrm{P}\int_{\nu_{thr}}^{\infty}\mathrm{Im}_{s}\,F_{i}(Q^{2},\nu',t)\frac{\nu'\mathrm{d}\nu'}{\nu'^{2}-\nu^{2}}$$

 $\alpha_P(0) \equiv 1.08$ (Pomeron); $\alpha_M(0) \le 0.5$ (Meson)

 \succ for i \neq 1, 5: unsubtracted dispersion relations

$$\operatorname{Re}F_{i}^{\operatorname{NB}}(Q^{2},\nu,t) = \frac{2}{\pi} \operatorname{P}\int_{\nu_{thr}}^{\infty} \operatorname{Im}_{s} F_{i}(Q^{2},\nu',t) \frac{\nu' \mathrm{d}\nu'}{\nu'^{2}-\nu^{2}}$$

> for i = 1, 5: finite energy sum rule

$$\operatorname{Re}F_{i}^{\operatorname{NB}}(Q^{2},\nu,t) = \frac{2}{\pi} \operatorname{P}\int_{\nu_{thr}}^{\nu_{max}} \operatorname{Im}_{s} F_{i}(Q^{2},\nu',t) \frac{\nu' \mathrm{d}\nu'}{\nu'^{2}-\nu^{2}} + F_{i}^{\operatorname{as}}(Q^{2},\nu,t)$$

Dispersion Integrals

• for $s \le (M_N + 2m_\pi)^2$ the dominant contribution is from one-pion intermediate states

 $\operatorname{Im} F_i \Longrightarrow \gamma^{(*)} N \to \pi N \text{ from MAID2003}$

MAID2003: Drechsel, Hanstein, Kamalov, Tiator, NPA 645 (1999)

> Asymptotic contribution to $F_5 = -4 F_{11}$

 π^0 exchange in the t-channel

> Asymptotic parts and contributions beyond π N

F₁^{as} : energy independent t-channel pole

$$F_1^{\text{NB}}(Q^2,\nu,t) - F_1^{\pi N}(Q^2,\nu,t) \simeq \frac{f(Q^2)}{1 - t/m_{\sigma}^2}$$

$$f(Q^2)f(Q^2) = [F_1(t = -Q^2,\nu = 0) - F_1^{\pi N}(t = -Q^2,\nu = 0)](1 + Q^2/m_{\sigma}^2)'m_{\sigma}^2)$$

$$\beta(Q^2) - \beta^{\pi N}(Q^2) = \frac{\left(\beta^{\exp}(0) - \beta^{\pi N}(0)\right)}{\left(1 + Q^2/\Lambda_{\beta}^2\right)^2}$$

contribution beyond π N to F₂ :energy independent constant

$$F_2^{\text{NB}}(Q^2,\nu,t) - F_2^{\pi N}(Q^2,\nu,t) \simeq F_2^{\text{NB}}(t = -Q^2,\nu = 0,Q^2) - F_2^{\pi N}(t = -Q^2,\nu = 0,Q^2)$$

$$\alpha(Q^2) - \alpha^{\pi N}(Q^2) = \frac{\left(\alpha^{\exp(0)} - \alpha^{\pi N}(0)\right)}{\left(1 + Q^2/\Lambda_{\alpha}^2\right)^2}$$

Scalar polarizabilities $\alpha(Q^2)$ ad $\beta(Q^2)$ (two parameters Λ_{α} and Λ_{β}) fitted from experiments

Subtracted Dispersion Relations

$$\operatorname{Re}A_{i}(\nu, t) = A_{i}^{\mathrm{B}}(\nu, t) + \frac{2}{\pi} \operatorname{P} \int_{\nu_{thr}}^{\infty} \operatorname{Im}_{s} A_{i}(\nu', t) \frac{\nu' \mathrm{d}\nu'}{\nu'^{2} - \nu^{2}}$$

$$\operatorname{Re} A_{i}(\nu, t) = A_{i}^{B}(\nu, t) + \left[A_{i}(0, t) - A_{i}^{B}(0, t)\right] \\ + \frac{2}{\pi} \nu^{2} \operatorname{P} \int_{\nu_{thr}}^{\infty} \operatorname{Im}_{s} A_{i}(\nu', t) \frac{d\nu'}{\nu'(\nu'^{2} - \nu^{2})} \longrightarrow \begin{array}{c} \text{convergence for all 6} \\ \text{amplitudes} \end{array}$$

* subtraction functions $A_i(0,t) - A_i^B(0,t)$ determined from subtracted DRs in t at fixed $\nu = 0$

$$A_{i}(0,t) - A_{i}^{B}(0,t) = a_{i} + \frac{t}{\pi} \left(\int_{\text{pos.-t cut}} dt' - \int_{\text{neg.-tcut}} dt' \right) \frac{\text{Im}_{t} A_{i}(0,t')}{t'(t'-t)}$$

* subtraction constants $a_i = A_i(0,0) - A_i^B(0,0)$ directly related to linear combinations of static polarizabilities

Subtracted Dispersion Relations

 $A_{i}(\nu, t) = \frac{a_{i}}{a_{i}} + A_{i}^{s}(\nu, t) + A_{i}^{t}(0, t)$

Drechsel, Gorchtein, BP, Vanderhaeghen, PRC61 (1999)

- one-pion intermediate states: $I\pi$ photoproduction multipoles from MAID analysis
- resonance contribution from multipion intermediate states

t-channel dispersion integral

 $\gamma\gamma \rightarrow \pi\pi$: unitarized S and D waves amplitudes

 $\pi\pi \rightarrow N$ N: extrapolation of the crossed π N $\rightarrow \pi$ N helicity amplitudes [Hoehler, 1983]

• negative – t cut: t \leq - 2m_{π} (M+m_{π})

extrapolation of the s-channel amplitudes (Δ (1232) and non-resonant π N exchange) in the unphysical region at ν =0 and t \leq 0

$A_{i}(\nu, t) = \mathbf{a}_{i} + A_{i}^{s}(\nu, t) + A_{i}^{t}(0, t)$

> $A_i^s(\nu, t)$ and $A_i^t(0, t)$ input from available experimental information of different processes ($\gamma \pi \rightarrow \pi N, \gamma \gamma \rightarrow \pi \pi$ and $\pi \pi \rightarrow NN$)

 $> a_i$: subtraction constants given by the polarizabilities

free parameters to be fitted to RCS data

$$\begin{aligned} \alpha_{E1} + \beta_{M1} &= -\frac{1}{2\pi} (a_3 + a_6) \\ \alpha_{E1} - \beta_{M1} &= -\frac{1}{2\pi} a_1 \\ \gamma_{E1E1} &= \frac{1}{8\pi M} (a_2 - a_4 + 2a_5 + a_6) \\ \gamma_{M1M1} &= -\frac{1}{8\pi M} (a_2 + a_4 + 2a_5 - a_6) \\ \gamma_{E1M2} &= \frac{1}{8\pi M} (a_2 - a_4 - a_6) \\ \gamma_{M1E2} &= -\frac{1}{8\pi M} (a_2 + a_4 + a_6) \end{aligned}$$

forward spin-dependent amplitude from experimental data

$$T(\nu, \theta = 0) = \vec{\varepsilon}'^* \cdot \vec{\varepsilon} f(\nu) + i\vec{\sigma} \cdot (\vec{\varepsilon}'^* \times \vec{\varepsilon}) g(\nu)$$

$$g(\nu) = \frac{-e^2 \kappa_N^2}{8\pi M^2} \nu + \nu^3 \gamma_0^{\text{dyn}}(\nu) \xrightarrow{\text{LEX}} \gamma_0^{\text{dyn}}(\nu) = \gamma_0 + \bar{\gamma}_0 \nu^2 + \mathcal{O}(\nu^4)$$
$$\operatorname{Re}[\gamma_0^{\text{dyn}}(\nu)] = \frac{1}{4\pi^2} \mathcal{P} \int_{\nu_0}^{\infty} \frac{\sigma_{1/2}(\nu') - \sigma_{3/2}(\nu')}{\nu'(\nu'^2 - \nu^2)} \, \mathrm{d}\nu' \qquad \operatorname{Im}[\gamma_0^{\text{dyn}}(\nu)] = \frac{\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu)}{8\pi\nu^2}$$

MAID05: input of dispersion integrals

Drechsel, Hanstein, Kamalov, Tiator, NPA645 (1999)

Asymptotic behaviour

Behavior at ν !1 at fixed Q^2 and t

$$F_{1}, F_{5} \sim \nu^{\alpha_{P}(t)-2}, \quad \nu^{\alpha_{M}(t)}$$

$$F_{5} + 4F_{11} \sim \nu^{\alpha_{P}(t)-2}, \quad \nu^{\alpha_{M}(t)-1}$$

$$F_{2}, F_{6}, F_{10} \sim \nu^{\alpha_{P}(t)-2}, \quad \nu^{\alpha_{M}(t)-2}$$

$$F_{7} \sim \nu^{\alpha_{P}(t)-3}, \quad \nu^{\alpha_{M}(t)-1}$$

$$F_{3}, F_{8} \sim \nu^{\alpha_{P}(t)-3}, \quad \nu^{\alpha_{M}(t)-2}$$

$$F_{9}, F_{12} \sim \nu^{\alpha_{P}(t)-4}, \quad \nu^{\alpha_{M}(t)-2}$$

$$F_{4} \sim \nu^{\alpha_{P}(t)-4}, \quad \nu^{\alpha_{M}(t)-3}$$

 $\alpha_{P}(0) \equiv 1.08 \text{ (Pomeron)}, \ \alpha_{M}(0) \leq 0.5 \text{ (Meson)}$ $for i \neq 1, i \neq 5 \text{ UNsubtracted Dispersion Relations}$ $ReF_{i}^{NB}(Q^{2},\nu,t) = \frac{2}{\pi} P \int_{\nu_{thr}}^{\infty} Im_{s} F_{i}(Q^{2},\nu',t) \frac{\nu' d\nu'}{\nu'^{2}-\nu^{2}}$ for i = 1, i = 5 : $ReF_{i}^{NB}(Q^{2},\nu,t) = \frac{2}{\pi} P \int_{\nu_{thr}}^{\nu_{max}} Im_{s} F_{i}(Q^{2},\nu',t) \frac{\nu' d\nu'}{\nu'^{2}-\nu^{2}} + F_{i}^{as}(Q^{2},\nu,t)$

Dispersion Relations at fixed t and fixed Q²

$$\mathbf{T}^{\mathrm{VCS}} = \varepsilon_{\mu} \varepsilon_{\nu}^{\prime *} \sum_{i=1}^{12} F_i(Q^2, \nu, t) \rho_i^{\mu\nu}$$

 $F_i(Q^2, \nu, t)$: 12 analytical functions in the complex ν plane with cuts and poles on the real axis $\int Im(\nu)$

 $\bullet v + i \varepsilon$ $V_{B} = V_{B}$ Re(v) $\bullet Analyticity in v, Causalit \rightarrow Cauchy integral formula$

$$F_i(Q^2,\nu,t) = F_i^B(Q^2,\nu,t) + \oint_C F_i(Q^2,\nu',t) \frac{\nu' d\nu'}{\nu'^2 - \nu^2}$$

Crossing symmetry and analyticity