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L Nucleon-nucleon interactions

Introduction

NN interaction is important for nuclear matter, neutron stars,
nucleosynthesis, nuclear structure, nuclear reactions, etc ...

Application of Chiral Perturbation Theory (ChPT) to NN
S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3; PLB 295
(1992) 114.

Weinberg’s scheme: Calculate the two-nucleon irreducible graphs
in ChPT (the NN potential Viyy) and then solve the
Lippmann-Schwinger (LS) equation

Tun(p',p) = VNN(p,ap)+/dPHVNN(P,7P”) Tun(p”, p)

m
p2 _ p//2 + I'E

C. Ordéfiez, L. Ray and U. van Kolck, PRL 72 (1994) 1982; PRC
53 (1996) 2086.
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L Nucleon-nucleon interactions

In 1935 H. Yukawa introduced the pion as the carrier of the strong
nuclear force

The pion mass was inferred from the range of strong nuclear forces

This was estimated from the radius of the atomic nucleus
Relativistic-Quantum-Mechanical argument

Thanks to ChPT we can calculate TPE and its role in NN
scattering is also well established N. Kaiser, R. Brockmann and
W. Weise, Nucl. Phys. A 625 (1997) 758.
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- Nucleon-nucleon interactions

Heisenberg uncertainty principle: AtAE > h

Relativity: Velocity of light is the Maximum velocity ¢

AtAE = A?EAE > h

_ he

AE = —
AV

Al~2fm (1fm=10"15m)

hc
Mﬂ— ~ m ~ 100 MeV

M, = 138 MeV
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- Nucleon-nucleon interactions

e A typical three-momentum cut-off A ~ 600 MeV (fine tuned to
data) is used in order to regularize the Lippmann-Schwinger
equation because chiral potentials are singular.

E.g. The tensor part of One-Pion Exchange (OPE) diverges as
1/r3 forr —0

e NN scattering is nonperturbative: Presence of bound states
(deuteron) in 3S; and anti-bound state in 1S,.
Spectroscopic notation 25t1[

: / dq(q® + ie)H(q® — ie)L(a? + M2) 2 P(q)

P+gq P—gq
Infrared enhancement

1/la| — 1/la| x m/|a|.
‘ 1/¢° — 1/[q° — @*/(2m)],
B P non-relativistic nucleon propagator
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- Nucleon-nucleon interactions

Extreme non-relativistic propagator (or Heavy-Baryon propagator)
1
q° + ie
Non-relativistic propagator
1
P — L 4je

2m

"Pinch” singularity
The integration contour cannot
—le be deformed




NN scattering from the dispersive N/D method including leading two-pion exchange

- Nucleon-nucleon interactions
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L Nucleon-nucleon interactions

e Vyy is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success

Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Gléckle, MeiBner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

e On the cut-off dependence

Chiral counterterms introduced in Vi following naive chiral power
counting are not enough to reabsorb the dependence on the cut-off
when solving the LS equation

Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavén Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002

> In Nogga et al. one counterterm is promoted from higher to
lower orders in 3Py, 3P, and 3D, and then stable results for

N < 4 GeV are obtained.

> Higher order contributions would be treated perturbatively

Pavén Valderrama, PRC 83 (2011) 024003; 84 (2011) 064002
B. Long, C.-J. Yang, PRC 84 (2011) 057001; 85 (2011) 034002; 86 (2012) 024001
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- Nucleon-nucleon interactions

e This procedure is criticized by Epelbaum and Gegelia, Eur.Phys. J.
A41 (2009) 341.

It is not enough to obtain a finite T-matrix in the limit A — oo
One should absorb all divergences from loops in counterterms

To avoid renormalization scheme dependence and violation of low
energy theorems when A — oo

e Change your LO: Avoid 1/m expansion in nucleon denominators
Epelbaum and Gegelia, Phys.Lett.B716,338 (2012) + OPE

Higher orders would be considered perturbatively
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L N/D method

N/D Method

Chew and Mandelstam, Phys. Rev. 119 (1960) 467

A NN partial wave amplitude has two type of cuts:
Unitarity or Right Hand Cut (RHC)

7= TPt a0 L grio TPl
A 47
Left Hand Cut (LHC)
p/
1
q YY) 2
77777 »----- (p p,) +2l>ﬂ7r
M=/2
2 s 2 2
= — 00, —M?2 /4
p T cosg P €l — o0 —M:/4]
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L N/D method

Cr
R — oo
RHC
e—0 D
N A
Tus(A) = Nyes(A) Njes(A) has Only LHC

~ Dys(A) D es(A) has Only RHC
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LUncoupled waves: Formalism

Uncoupled Partial Waves

Tes(A) = Nyis(A)/Dyes(A)
mvA

%DJ[S(A) = —NJ/'S(A)? 5 A > O
SN jis(A) = Dys(A)STus(A), A< —M2/4
A=lp
E.g. taking one subtraction in D(A) and N(A)
Dyes(2) _~_.Dyes(A) — Dyes(D)
%de(z—A)(z—D)_Qm A—D

/ o DJes g%+ i€) — Dys(q® — ie)]
— A+ ie)(g? — D + ie)

Schwartz’s reflection principle:
If f(z) is real along an interval of the real axis and is analytic then:

f(z*)="f(2)*
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L Uncoupled waves: Formalism

Dyes(q® + i€) — Dys(q? — i€) = 2iSD(g> + ie)

‘COUPLED SYSTEM OF LINEAR INTEGRAL EQUATIONS‘

A—D [ NJ/’S(qz)
Dys(A)=1-—"—"[ dqg°
ss(4) = )
A—D/L deAst(k2)Dst(k2)

Nyes(A) = Nygs(D) + (k2 — A)(k2 — D)

L=—-——-T~
4

= mVA/4r , A>0
A(A) =STus(A), A<L
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L Uncoupled waves: Formalism

A [t A gs(K?)Dyes(k?)
Des(A) =1 — ANys(0)g(A, 0) + W/ dk? 2

o0

g(A, k%)

2 1 [T, p(q%)
g(A k%) = 77/0 dq (g2 — A)(q2 — K2

Convergent, p(A) x VA

CHANGE OF VARIABLE:

L
A=—, x€[1,0]
X
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L Uncoupled waves: Formalism

Fredholm Integral Equation of the Second Kind

Dyis(x) = fres(x / dyK(x,y)D(y)

K(xy) = -8 )

T XYy

@ Not L,

@ Not symmetric
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L Uncoupled waves: Formalism

We discretize the equation:

K(x,y) =k (G <x<i b <y<s?)
flx) =f, (r71< S%) (r,s=1,2,...,n)
@(X) = ¢r ( n <X S%)

3 (5,5 - ik) bs =,

s=1

We indeed make use of more efficient numerical methods to
calculate integrals !
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LUncoupled waves: Formalism

High-Energy behavior

o Let |D(A)| < A" for A —
N(A) = T(A)D(A)
~S(A) -1
TA =50
N(A) < An71/2
We divide N(A) and D(A) by (A— C)™ with m > n

D(A)
Am
L<C<O0

— 0, when A — 0
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L Uncoupled waves: Formalism

a(4) = (AD—(AC))'"
N
A=

Unsubtracted dispersion relation (DR)

R 1> 5p(q®)n(q?)
_; A— C _7T/0 dq” g — A

= Vi 1 b AK®)d(k?

n(A):Z(A oy +/Oodk2(k2)_(A)
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LUncoupled waves: Formalism

In terms of the original functions D(A) and N(A)

m N m %) 2 2
A) =3 5(A 7,-_(A 9 /Odqz 2p(q)N2(¢7)

™

ey

=

S mei, AZQO" A(l<2)D(/<2)
;u,A ) 7/ dk2 ~ Ak )

m =1 1S THE MINIMUM
Once-subtracted DR for N(A) and D(A)

@ C could be taken different in D(A) and N(A)
s N(A): C=0
o D(A): One subtraction at C = 0 and the rest at C = —M2.
@ Normalization: D(0) =1
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LUncoupled waves: Formalism

e In connection with ChPT this dispersive method was recently
applied to NN scattering in

® LO: M. Albaladejo and J.A. Oller, PRC 84 (2011) 054009; 86
(2011) 034005 employing OPE

® NLO: Z.-H.Guo, G. Rios, J.A. Oller, arXiv:1305.5790
OPE+leading TPE

The N/D method provides nonperturbative scattering equations
that requires an input A(A) that is calculated in perturbation
theory

Integrals of infinite extent are convergent by introducing enough
number of subtractions

In A. M. Gasparyan, M. F. M. Lutz and E. Epelbaum, arXiv:1212.3057
integrals were truncated — loss of perfect analytical properties
and self-control on the number of subtraction constants required.
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L Uncoupled waves: Formalism

A(A) is given by _7’ the discontinuity of T(A) across the LHC:
e OPE
o Leading TPE (irreducible)
@ Once-iterated OPE

Kaiser, Brockmann and Weise, NPA625(1997)758

,,,,,,, § % :

lim A(A) — A

A—o00

A(A) is finite

For once-subtracted DR:
@ D(A) should decrease 1/A% , a > 0, for A — oo

o N(A) should decrease as 1/A"2 for A — oo
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LUncoupled waves: 150

1S,: Once-subtracted DR

A [t AK2)D(K?
D(A) =1 — Av1g(A,0) + —/ dk2#g(A, k?)
T J oo k
Fixed in terms of scattering length: v; = —4mas/m
[ — — ] w0 )
o | e /_mdk27(k2)2 {\/42 - ;}
; Theory: a fixed —
© Nijmegen data -+~ 1 .
Theory: OPE - | Correlation between ag and rg
Pl
= rs = 2.64 fm

w1 Expr 2.75+£0.05 fm
0 1 Nijmll: 2.670 fm Arriola,
Pavén, nucl-th/0407113

L L
200 250 300
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LUncoupled waves: 150

A/L dk2%g(;\, ) + D(A) = 1+ A" (4, 0)

D(A) = Do(A) + asD1(A) with Dg 1(A) independent of as

Low-energy correlation:

L o Ak D K2
rs:a0+a1+022, 2/ dk? 1( )\/?
as a: T or
ag = 2.44 fm s m A(
a1 =" k2 [D K2)v/—k2 — D1 (K?) }
a_1 = —4.61 fm? | LT on2 (k2 ol i
L
a_p = 5.26 fm® . LR A(k ) Do(K?)
2m? J_ (k?)?

Pavén Valderrama, Ruiz Arriola PRC74(2006)054001: solving a
Lippmann-Schwinger equation with Vjyy that includes OPE+TPE +
boundary conditions + orthogonality of wave functions
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LUncoupled waves: 150

Twice-subtracted DR: 2, and r, fixed— v» is fitted
D(A):HA{;,S (1- %’sM )+— [1+V1M g0, —M )}}

— A(A+ M2) |:u2g(A, —M2) —

A(kz )D(K?) [ A+ M2

2 2 2 2 2 2 2 2

+2 / e e [K2g(A, K2) + M2 g(A, —M2)] — M2 g(K?, —M2)
2

g(A, —M2) — g(A, 0)}
1—,\42

™

(/?407

Theory: OPE -
Theory: ag, I fixed .
10 Theory: a4 fixed — b
Nijmegen data ------

0 L L L L L
0 50 100 150 200 250 300
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LUncoupled waves: 150

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

AA+M2) [t L A(K)D(K2) [, 7*o(q?)
R [ (k2)2 | % (@ — A)q - K)(@ 1 M2)

— 00

D(k?) — 1

For that two subtractions at least must be taken for the previous
integral to converge
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LUncoupled waves: 150

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:
A+M2 / dk2A k2 q2 qu(qz)
(a> = A)(q® — K*)(q* + MZ)

The integral displays the dominant role played by the nearest region in

the LHC
0 P pr—————
0 e —————— e |
05
al
2t Nl OPE -~
All — ) sk Once-iterated OPE ------
= OPE ---- Irreducible TPE -
& 3 Once-iterated OPE ------ 1
E Irreducible TPE - @ 2r
£ SR B
» g 25
st
< 3t
s 35
7 alb
s 45
0 50 250 300 10 9 8 3 2 1

5 = e
p(Mev) P
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LUncoupled waves: 3P0

3py: Once-subtracted DR. NO FREE PARAMETERS
v1 = 0 because for a P-wave T(0) =0= N(0), D(0) =1

L > 2 L 2 2
D(A)=1— ;[ dk2%gm? k) N(A) = ?[ dk2i£?kzD_(:))

Theory: No free parameters — e
60 - Nijmegen data === =T
Theory: OPE -
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LUncoupled waves: 3P0

Twice-subtracted DR

2 4ma
N(A) = Au2+—/ dk2A )D(k) vy = —

AUC)UKT) , ay = 0.89 M3
(k2 — A)

2 2 2
D(A) = 1+ Ad, — A%1,g(A,0) + A? /oodk2A(k(k)§(k)g(A, k?)

70

Theory: OPE -
60 - Theory: No free parameters — ]
Theory: ay, fixed ----
Nijmegen data ------

0o is fitted

40 | 4

] 2 ~ —0.30 M,

5(Py)°

20 |-

10
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LUncoupled waves: 3P0

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

AA+M2) [t S AK2) [ 7*p(q?)
- /_oo"k2 (k2)2/o G AN — KON + M)

’ 3
Sr 25 N
2 Once-iterated OPE ------
Irreducible TPE -
I All — e
o OPE ---- TT—
8t Once-iterated OPE ------ I T
e .
£ Irreducible TPE - 2.l
3 g
o2t |
7
.
< B -
5 A
At e
D ast e
2 - L L L L L ) ) ) ‘
Bt -10 -9 8 7 6 5 4 3 5 s
2 2,
' pi(my)
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LDiscussion on LHC and chiral counting

Discussion on LHC and chiral counting

AA+M2) L A(KD) oo 7*p(d?)
/7oodk /0 ¢ (g2 — A)

w2 ()2 (@@ = K2)(® + M2)

1) Low-energy enhancement in the integrand 1/(k?)?

2) From —M2 /4 to —M2 large OPE A(A)
OPE dominates the integral.
Typical value of derivative 1/A? — 16/M2 in an interval of
length 3/4M2 relative change ~ 3 (quite steep function)

3) Rapid convergence pattern at low energies:
Im>2r>3r>...>nm
(eMrr s e 2Mrr s o= 3Mar 5 ) r> M1

4) Increasing n in multi-w ladder: VGV --- VGV
Three-(n-)times iterated OPE gives rise to 3w (nm) cut for
A< —9M2/4 (A < —n?M? /4)— Further suppressed
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LDiscussion on LHC and chiral counting

5) A < —M?2 Numeric enhancement of irreducible TPE

3P0' A\/G\/ N mm 36 ~ 3M7r

AR (—A)2 245 (_A)

5) This numerical enhancement makes VGV and Irre-TPE to
have similar size.

6) For a given nm-exchange: Higher order corrections.
Subleading in the chiral counting — perturbative treatment.

8) We advocate for counting in A(A): each iteration GV as
O(p?) ~ extra loop in Irre-TPE
It would have this numerical enhancement.
VGV Irreducible TPE

12

°

T
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LUncoupled waves: lPl

1p;: Once-subtracted DR: Twice-Subtracted DR:
No free parameters ay = —0.94 M3

T
Theory: OPE -+
Theory: No free parameters —
Theory: ay, fixed ----
Nijmegen data ----- !

Theory: OPE -
Theory: No free parameters —
Nijmegen data -

L
250 30

They are the same!
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LUncoupled waves: lPl

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

AA+M2) [t SA(KY) [, 7*p(q?)
e / o (k2>2/ (@~ A~ k)@ 1 M2)

— 00

' 2
0
-3 | 2r Once-iterated OPE -
’g’ = Irreducible TPE -+
E -3
= a8
=2 | &
S All — Sl
o OPE ~---
3 Once-iterated OPE ------ Al
M Irreducible TPE - | il
gt
i 4
8l
9 . . . . ) ) ‘ ‘ ‘
5 o 5‘0 0 1‘50 21;0 Z;U 300 -10 9 8 7 5 5, . -
p(MeV) pA(m2)
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LUncoupled waves: 3P1

3p; : Once- and Twice-Subtracted DRs No stable solution. It

depends on the integration numerical limit
Three Time-Subtracted DR

A2
D(A) =1+ A+ 5342 4 (vr — vsM2)A(A + Mfr)?%
2\2 L 2 2
— 3 A(A+ M2)2g(A, —M2) + M/ dk2A(k(k)§3(“g(A, K, —M2; 2)
™ —0o0

At A(K?)D(k?)
N(A) = oA+ 13A% + — K2 S
W =ravnd+ S [ oG

2 cm= [ da? LCRICE
g(A k%, C )_/0 dq (q2 —A)(q2 _ kz)(qz _ C)” :
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LUncoupled waves: 3P1

4
Uy = mav , ay = —0.54 M;3
m

v3 = 0* Fixed. lts effects are reabsorbed in the other free parameters

0o, 03 are fitted

g 2.7 ~ 2.9 M2

o Theory: OPE - _
= | Theow: NLO — 63~03~0.4 M_*
QU Nijmegen data ------ ™
o -15
ot Highly correlated !

0 50 100 150 200 250 300

p(MeV)
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LUncoupled waves: 3P1

Quantifying contributions to A(A)

A("Py)-Integral

A typical integral from twice-subtracted DR:

AA+M2) [t SA(KY) [, 7*p(q?)
e / o (k2>2/ (@~ A~ k)@ 1 M2)

— 00

05
0
05 -
Al
15 E )
i
. > L
| e 17 OPE -~
OPE as| Once-iterated OPE -+
#*T" Once-iterated OPE - | eerated OPE -
Irreducible TPE = " A
al N
-2.5
35 |
° P ; . L L L L L L
-4 ° ;u 0 1‘50 2‘50 200 -10 9 P E < 5 5, " - s -
p(MeV) 2md)
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LUncoupled waves: Higher partial waves £ > 2

A partial wave should vanish as A® in the limit A — 0T (threshold)

Method: /-TIME-SUBTRACTED DR \

A‘/ dsz k2 Dﬂs(k2)
- A)

lim N(A) — A*

A—0
—1+Z(5A'+—/ a2 2D

lim D(A) — 1+ O(A)

k2’ £(AK)

A—0
Price to pay: ¢ — 1 free
parameters:

A—0 D(A) Tend to become irrelevant as ¢

increases
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LUncoupled waves: 1D2

1D,: Twice-subtracted DR
A%t A(K*)D(K?) 2
D(A) = 1+A62+?[Mdk San EA R

Fit 6, = —0.22 M2

10
Theory: OPE -+ i
sl Theory: fit =--- !

Theory: 3,=0.1 — i

Nijmegen data ------ H
Al .~ Magenta line

Low-energy resonance.

82 = 0.1 M2 Red line

200
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LUncoupled waves: ng

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A2t AR [, p(q?)
™ ) k (k?)? /0 T (@ =A@ -

01 N . .
Al — OPE ---+
008 - OPE -~~~ A 05 Once-iterated OPE -
Once-iterated OPE -~ Irreducible TPE -
Irreducible TPE - s
0.06 4
@ -0.5
B oo | ~
c 8.
- £ 1
N g
0.02 4
E 15 ]
<
0 A
ook T - 2.5
3 . . . . . . . . .
ooty o w00 50 200 20 300 e N
p(my)

p(MeV)
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LUncoupled waves: 3D2

3D,: Twice-subtracted DR

2 L 2 2
D(A) =1+ Ab, + %/ dsz(k(k)Q%(k)g(A, k?)

— 00

@ 0 = —0.18 M2 is fitted to data v/A < 200 MeV

Theory: OPE -
sl Th?ory: 3, fitted — ]
Nijmegen datg -/ ]
20 —
o e
= .
O 15 4
o
[
bs}
10 - —
sk ]
0 . . . .
0 50 100 150 200 250 300

p(MeV)
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LUncoupled waves: 3D2

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A2t AR [, p(q?)
™ ) k (k?)? /0 T (@ =A@ -

0.6 . . ‘ | |
Al — ) OPE ----
T ont < Once-iterated OPE -+
Once-iterated OPE -~ K L edterated OPE -~
Irreducible TPE =
04 {
o
@ 03 |
g .
2
c
< o2f | me
a\\‘ < a4t
. o1 |
<
s
¢ s
8l
01} |
10 . . . . ) ) ‘ ‘ ‘




NN scattering from the dispersive N/D method including leading two-pion exchange

LUncoupled waves: 1F3

1F; : Three-time-subtracted DR

k?)D(K?)

2 APt A 2
D(A) =1+ Ay + A%55 + — [ dk Gk g(A, K?)

‘Principle of maximal smoothness for D(A):‘

All the §; = 0 except dy

D(O)=1,DM0)=0for1<n<{—2
D=1(0) # 0
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LUncoupled waves: 1F3

3('F3)°

LF; . Three-time-subtracted DR

A b A(KY)D(K?)
_ 2 2 2
D(A) =1+ Ady + A%d3 + - /_Oodk — g(A k%)

Principle of maximal smoothness for D(A):

@ 0, = 0%; 03 is left undetermined by the fit

I | Red line:
T D"(0) =12 M *
i 1 Magenta line:
_ —4
L 1 D"(0)=10 M;
| Curve with Once-Subtracted
Theory: OPE )
Theory: D"(0)=1.2 — DR , Cyan line
T o ot Similar Results
r Theory: m=1 1  F waves are perturbative
) 5‘0 ‘ 1‘50 2‘00 2‘50 300
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LUncoupled waves: 1F3

Quantifying contributions to A(A)

A typical integral from three-time-subtracted DR:

At AR [, p(q?)
™ ) k (k?)3 /0 T (@ =A@ -

0.1 4 T T
OPE
Once-iterated OP!|
0 [ Irreducible TPE
- [l e e e T e L L S L
. Al —
o OPE ----
B 02 Once-iterated OPE -+ 20
2 -
< Irreducible TPE - A
- <
L o0l <
L
<
04 | 6k
s
0.5 -
10 . . . . . . . . .
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NN scattering from the dispersive N/D method including leading two-pion exchange

LUncoupled waves: 3F3

3F; : Three-time-subtracted DR

. A3t A(kQ)D(kZ)
— 2 2 2
D(A) =1+ Ao, + A%03 + / dk (k)3 g(A, k%)

— 00

[*] 52:0*, (53

[0 S —— 1

R ] Red line: Fit
o T 1 D"(0) ~ 0.014 M_*
-
WL s
L Theory: OPE - .
o Theory: D"e(g;io.ou— Cyan I|ne.
Nijmegen data ------
Theory: m=1 Once-subtracted DR




NN scattering from the dispersive N/D method including leading two-pion exchange

LUncoupled waves: 3F3

Quantifying contributions to A(A)

A typical integral from three-time-subtracted DR:

At AR [, p(q?)
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NN scattering from the dispersive N/D method including leading two-pion exchange
LUncoupIed waves: Summary figure
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NN scattering from the dispersive N/D method including leading two-pion exchange

LUncoupIed waves: Summary figure

1H5: - T e 7T T 3H5:

G-waves: D'(0) =0, D”(0) =0

1G4 : DB®)(0) ~ —0.03 M6

3G, : DB®(0) ~ —0.04 M_°

H-waves: D'(0) =0, D”(0) =0, D®)(0) =0
'Hs : D®(0) = —1.0 M8

3Hs : D¥)(0) ~2.5 M8

S




NN scattering from the dispersive N/D method including leading two-pion exchange

L Coupled waves

Coupled Waves

;plm
4

Sus =1+ T
Along the RHC A >0
Sus - Shs = Shs - Sus =1
cos 2¢ ef21 i sin 2¢ ef(91162) )
- j ; >
Sus <isin D¢ i(d1+02) cos 2¢ i202 ) , [pl*>0

e is the mixing angle: i=1((=J-1),i=2({(=J+1)

1 % sin® 2¢ -1
Im Ti(A) —r(A) [1 + 1 — cos 2¢ cos 25,-] = —vi(A)
m—t  _ _2p(A)M = —uo(A)

sin 2¢



NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled waves

(ij = 11, 12, 22)

dk2 A’J(k2)DU(k2)

Lij
N (A) = N(0)dg,0 + A?/ m

i AA- ()5t vi(¢*)Ny(a”)
Dy(A) =1+ GPAA- O m /d 2q *(q? - C)Z"f‘Jl(q2 —A)

ol AA—C)f 2 1t Ay(K?) Dy (K
=1+Z§(”)A(A—C)p_2+ ( 772) /_dk2 i (k%) Dji( )><

N
VU qz)(qz)z’f’1
< At

lim y22(A) x A~3/2 C # 0 to avoid !.nfrared
A—0T divergences for ij = 22



NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled waves

(-1 [ (-1)"

Ccr-1 . n!
n—=

s = c"D(C) -1

Principle of maximal smoothness for D(A):
Di(C)=1, DP(C)=0 1<p<n—2; D,-(jn_z)(C);éO

One proceeds in a coupled-iterative way:
@ We take an input.
@ Solve the integral equations and get new v;;(A).

© Repeat the process until convergence is obtained.

Typically, C = —M?2




NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled waves: 3P2 — 3F2

3P2 _3,_-2

@ 3P,: 13 =1 Two types of DR are included:

© Minimal: Once-subtracted DR
@ Twice-subtracted DR

_ ATy — 0.0064 M3

V2

@ 3P, — 3F,: (15 = 2 —Twice-subtracted DR

@ 3F,: fy =3 — Three-time-subtracted DR

Results are very similar for Dj,(C) < —1 and insensitive to
D22(C) fixed to 1*



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3P2 — 3F2

Phase shifts

From fit to data: Dio(—M?2) = 1.1

25
Theory: ay, fixed, Dq4(-mp)=0.1 —
Theory: Once subtracted DR ----
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3P, — 3F2

12 Theory: ay, fixed, D(-m)=0.1 —
Theory: Once subtracted DR
Theory: OPE

Nijmegen data ------

e ~
X

i kel

b3
sl ]
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3P2 — 3F2

Quantifying contributions to A(A):

A2 L S AK) oo v11(q°)
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3P2 — 3F2

@ The OPE contribution to A(A) for 3P, has an anomalously
small size compared to the other P-waves

] 3F2
242 2\ 4212
A(A + M7) /’- a2 A(k /°° v22(9*)(q%)
w2 - A = k) + M2)2
16 05
i OPE
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3P, — 3F2

° 3P2_3F2

AA+M2) (L AR [oo e
7/7 dk (k2)2/ d (2 — A)(q? — K2)(q2 + M2)

T T . . . . ‘
All —

o OPE M ]
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T oo
@1 2 os 1
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£ < s 1
L o0
< i |
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25 Once-iterated OPE ------ ]
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3'D3 - 363

3D3 _3G3

@ 3D,: 11 = 2 — Twice-subtracted DR

Di1(C)=1"

@ 3D3 —3G;: 015 = 3 — Three-time-subtracted DR

D},(C) ~ —0.1 M2

o 3Gz : l2p = 4 — Four-time-subtracted DR

Dy, (C)>1 M*



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3'D3 - 363

Phase shifts

Theory: TPE —
3F Theory: OPE -
Nijmegen data -
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3'D3 - 363

Quantifying contributions to A(A)

A(A+ M2) /L zAu(k /oo v11(4%)d?
— 00

w2 A)(a® — K2)(q® + M2)
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OPE -

Once-iterated OPE -
Irreducible TPE

T
8o >
£ s
=¥ S
2. <
o7
3 06 - 1
2
o8| oPE B
s Al Once-iterated OPE -~ 1]
Irreducible TPE
12
4 . . . . . 10 s ) 7 s 5 a 3 2 1

p(,\)ﬂﬂe\/) 200 pZ(mT‘Z)



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3D3 - 363

3
@ °G3
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NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled waves: 3D; — 3G;

3D3 - 3G3
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

36— 3Dy

@ 35;: The 35; scattering length a; = 5.424 fm is fixed
@ 3D; and mixing wave: The deuteron is located at the same
position as it is obtained in 35;.

4 A A11(k?) Dy (K?
Di1(A)=1+A 71-atgll(A70)—i—f/ dk2wgu(%\. k?)
m T J oo k
2 _}/oo 2 v (q)
gi(A k%) = A dq (@2 — A)(F - K?)
For (i,j=1or2): k3 = —ED(351)/m

A AA-K2) 285(K)Dy(K*) 4, o

g?(A, k) / dq 2 Vu(qz) 24-1)
il A)(q? - k2)(q? — kp)




NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled Waves: 351 — 3D1

@ There is dependence on the input used to solve the integral

equations
@ We require the maximum stability under changes in the input.
Eg.
_ . Siner _3
e = ,l,lno P 1.128 M:"|experiment

has its minimum value for our best results a, = 1.1 — 1.14 M3



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

Phase Shifts:

180

Theory: a, fixed —
Theory: OPE -
Nijmegen dat

>~
o
5
w
&
w©
»
o E) 0 150 ) 0 E
p(MeVv)
o
Theory: a, fixed —
Theory: OPE -
Nijmegen dat
5
10
>~
a
o
b3

pMev)

Theory: a, fixed —
Theory: OPE
Nijmegen data

&)

@ Great improvement of the OPE
results



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

> Deuteron binding energy: Ep = 2.37 MeV,
experimentally Ep = 2.22 MeV,
with OPE we obtained Ep = 1.7 MeV.

> Effective range: r; = 1.36 — 1.39 fm,
experimentally r; = 1.75 fm,
with OPE we obtained r; = 0.46 fm

L 2 2 5
___m 2 D11 (k%)Dui(k?) [ 1 Ak
re = 27‘(’231_»/ dk (k2)2 ar + g11(0 k )

o v qz)_ r(q )

/ % (a%)?

[e's] v 2

811(0, K2 ) = 7T/0 dqzz(;l(qz)

More complicated correlation between ri—a; than in 1Sy: v11(A)
depends nonlinearly on D;;(A)




NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled Waves: 351 — 3D1

Diagonalizing S-matrix

(S 0 r
s=o(® 2 )o

Asymptotic D/S ratio of the
deuteron

n = —tane¢

cose —sine
O B ( [ >
sine cose
Residue of Sp at the deuteron
pole

2
Np

So= ——=t—
—k3 +ivVA

+ reg.terms

Ours results: n =0.029 , N2 =0.73

Other determinations:

Ericson, Rosa-Clot, 1983: 1 = 0.02741(4)

Conzett et al, 1979: n = 0.0263(13)

Nijmegen PWA: 1 = 0.02543(7) , N2 =0.7830(7) fm ™'



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

o We also tried other possibilities for the integral equations by
including more subtractions
@ They did not work:

o Either the coupled-channel iterative process did not converge
@ Or it converged to the uncoupled-wave case

Case 1 Fixing from data: a; and a.
Case 2 Fixing from data: a;, r and Ey4
Case 3 Fixing from data: a;, r, E4 and a.



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

Quantifying contributions to A(A)
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled Waves: 351 — 3D1

"] 351 — 3D1
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NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupIed waves: Summary figure
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NN scattering from the dispersive N/D method including leading two-pion

LCoupIed waves: Summary figure
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3F4 - 3H4

3F, — 3H,

@ 3F;: (11 = 3 — Three-time-subtracted DR
@ 3F; —3H,: (1, = 4 — Four-time-subtracted DR

@ 3Gz : ¢ =5 — Five-time-subtracted DR does not converge
— Six-time-subtracted DR

6
Dp =1+ 6FDAA-C)2

p=2
AA=C)® [t DAp(k?)Dxn(k?
P )/dk2 22((/()2)622( g4, 1,C:5)
_ ) A 2 Doy (K?) D (K)
N22(A) 5 A’ + / dk —) (k2 A)

ve = 0.079 M;12 predicted from uncoupled once-subtracted
DR



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3F4 - 3H4

Phase shifts
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3F4 - 3H4

Quantifying contributions to A(A)
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3G5 — 3'I5

3G5—3

@ 3Gs: (17 = 4 — Four-time-subtracted DR

@ 3G; — 35 1o = 5 — Five-time-subtracted DR

@ 3J5: oo = 6 — Six-time-subtracted DR does not converge —
Seven-time-subtracted DR

7
Dy =1+ 6FDAA-C)2

+W/_dk2A22(lfk)2%2(k2)g22(A k?,C;5)
Nao(A) = $22)A6+* / k2A22()k2£22(f\§)

v7 = —0.178 M_* predicted from uncoupled
once-subtracted DR



NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 3G5 — 3/5

Phase shifts
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NN scattering from the dispersive N/D method including leading two-pion exchange

LCoupled waves: 3G5 — 3/5

Quantifying contributions to A(A)
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NN scattering from the dispersive N/D method including leading two-pion exchange
LCoupled waves: 365 — 3/5

Minimum number of free parameter per partial
wave:

1o [1]3P [0][35—-3D; |1
3P [3]1P [0]3P,—3F, |1
ID,[0]3D, [1]3D5-3G3 | 1
1R |0 [3F |1 [3R—3H, |1
G [1]3G [1]3Gs -3 |1
THs [1]3Hs | 1




NN scattering from the dispersive N/D method including leading two-pion exchange

L Conclusions

Conclusions:

@ Great improvement of the results from OPE to TPE. Our
results typically reproduce data as well or better than pure
NLO Weinberg scheme.

@ Contributions to D(A), A > 0, from LHC integrals of A(A)
are suitable for a chiral expansion:

o OPE is O(p°): Dominant.
@ Once-iterated OPE and irreducible TPE can be booked of the
same size: Subleading.

© Adding more pion ladders in reducible NN diagrams is
suppressed because of its “threshold” A < —M?2n?/4

@ We count iterated and irreducible two-pion loops on the same
footing, O(p?). Numerical enhancement of the latter.

© Perturbative treatment of higher order contributions with a
fixed number of exchanged pions.



NN scattering from the dispersive N/D method including leading two-pion exchange

L Conclusions

© This should be further confronted with calculations of A(A)
at O(p%) and O(p*).
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