Compton scattering: from deeply virtual to quasi-real

Dieter Müller Ruhr-University Bochum

- Motivation
- Exact parameterization of (D)VCS amplitude
- Cross sections and ? Rosenbluth separation
- Some DVCS phenomenology
- A. Belitsky, DM, A. Kirchner hep-ph/0112108
- A. Belitsky, DM, Y. Ji 1212.6674 [hep-ph]
- K. Kumericki, DM, M. Morgan 1301.1230 [hep-ph]
- E. Aschenauer, S. Fazio, K. Kumericki, DM (contains Rosenbluth separation, to submit)

a simple and very convenient parameterization of the electromagnetic nucleon current

$$\langle p_2, s_2 | j_{\rho}(0) | p_1, s_1 \rangle = \overline{u}(p_2, s_2) \left| \gamma_{\rho} F_1(t) + i \sigma_{\rho\sigma} \frac{\Delta^{\sigma}}{2M} F_2(t) \right| u(p_1, s_1)$$

in terms of Dirac and Pauli form factors

form factors are fundamental quantities:

- revealing that the nucleon is a composite particle [Hofstadter 1956]
- subject of many experimental measurements (which are challenging) ? $-t \rightarrow 0$ (nucleon radius), ? large -t behavior, ? time-like behavior
- various theoretical approaches are employed to explain data lattice QCD, effective theories, Dyson-Schwinger approach, QCD sum rules, pQCD, wave function-modeling, GPD modeling,
- ~ 1600 papers on spires
- Can you imagine a situation where ``everybody" has his own conventions to parameterize the electromagnetic nucleon current?

Compton scattering is another fundamental and important process

- revealed the nature of light
- low energy theorem (Thomson limit) serves to define electric charge
- reveals that the nucleon is a rather rigid particle small polarizabilities
- many (technological) applications
- virtual Compton scattering one ``measures" generalized polarizabilities
- description of the proton in terms of mesonic degrees of freedom
- uses of dispersion relations
- > deeply virtual Compton scattering one ``measures" Compton form factors
- description of the proton in terms of generalized parton distributions
- uses of another set of dispersion relations, too
- deep inelastic scattering one measures DIS structure functions (absorptive part of forward Compton scattering amplitude)
- description of the proton in terms of parton distribution functions
- high energy QCD (small x_B)
- ~ 2300 papers on spires about Compton scattering, including
- ~ 200 about virtual Compton scattering
- ~ 300 about deeply virtual Compton scattering

How to parameterize (deeply) virtual Compton scattering amplitude or tensor?

counting complex valued helicity amplitudes

CS	6 = 4 + 4 - 2
(D)VCS	12 = 4 + 4 + 4
VVCS /DDVCS	18 = 4 + 4 + 4 + 4 + 2

□ forward kinematics standard convention (rest frame)

• (DIS) hadronic tensor and virtual photoproduction cross section

VCS a kind of standard conventions were emerging during time

- photon helicity amplitudes (center-of-mass frame) and Pauli-spinors
- another set of VCS amplitudes for dispersion relations

DVCS a kind of standard that arises from 1/Q expansion

- one perturbatively calculates the hadronic tensor
- nomenclature arises form that of generalized parton distributions
- strictly spoken ``everybody" uses its own convention

desired/needed:

- to have one standard parameterization
- to know the map among different parameterizations
- analytic form of leptoproduction cross section

Calculating DVCS tensor

$$T_{\mu\nu} = i \int d^4x \, \mathrm{e}^{\frac{i}{2}(q_1 + q_2) \cdot x} \langle p_2 | T \left\{ j_\mu(x/2) j_\nu(-x/2) \right\} | p_1 \rangle$$

- collinear factorization approach (calculating Feynman diagrams on partonic level)
- operator product expansion (in terms of light-ray operators)

$$Tj_{\mu}(x/2)j_{\nu}(-x/2) \stackrel{\text{LO}}{=} \frac{S_{\mu\nu\alpha\beta}ix^{\alpha}}{(x^{2}-i\epsilon)^{2}} \left[\overline{\psi}(x/2)\gamma^{\beta}\psi(-x/2) - \overline{\psi}(-x/2)\gamma^{\beta}\psi(x/2)\right] \\ + \frac{i\epsilon_{\mu\nu\alpha\beta}ix^{\alpha}}{(x^{2}-i\epsilon)^{2}} \left[\overline{\psi}(x/2)\gamma^{\beta}\gamma^{5}\psi(-x/2) + \overline{\psi}(-x/2)\gamma^{\beta}\gamma^{5}\psi(x/2)\right]$$

5

• expansion in leading $1/x^2$ singularities is easily done by projection on the light cone $n_{\mu} \sim q_{\mu} + ...$ and $n_{\mu}^* \sim P_{\mu} + ...$

with
$$q_{\mu} = (q_{1\mu} + q_{2\mu})/2$$
 and $P_{\mu} = p_{1\mu} + p_{2\mu}$

$$T_{\mu\nu} \stackrel{\text{LO}}{=} -g_{\mu\nu}^{\perp} \sum_{q} \int_{-1}^{1} dx \left[\frac{e_{q}^{2}}{\xi - x - i\epsilon} - \frac{e_{q}^{2}}{\xi + x - i\epsilon} \right] q(x, \xi, t, \mathcal{Q}^{2} | s_{1}, s_{2})$$
$$-i\epsilon_{\mu\nu}^{\perp} \sum_{q} \int_{-1}^{1} dx \left[\frac{e_{q}^{2}}{\xi - x - i\epsilon} + \frac{e_{q}^{2}}{\xi + x - i\epsilon} \right] \tilde{q}(x, \xi, t, \mathcal{Q}^{2} | s_{1}, s_{2})$$

GPD nomenclature $q(\dots | s_1, s_2) = \overline{u}(p_2, s_2) \left[n \cdot \gamma H(\dots) + \frac{i n^{\alpha} \sigma_{\alpha \beta \Delta^{\beta}}}{2M} E(\dots) \right] u(p_1, s_1)$ $\widetilde{q}(\dots | s_1, s_2) = \overline{u}(p_2, s_2) \left[n \cdot \gamma \gamma^5 \widetilde{H}(\dots) + \frac{n \cdot \Delta}{2M} \gamma^5 \widetilde{E}(\dots) \right] u(p_1, s_1)$

consequences of 1/Q truncation and restriction to leading order in pQCD

- DVCS tensor structure depends on the choice of *n*
- scaling variable $\xi \sim x_B/(2-x_B)$ depends on the choice of *n*
- gauge invariance holds only to leading power accuracy
- DVCS tensor structure is not complete

to overcome these problems one can go

- to twist-3 accuracy, yields 4 other GPDs (LT photon helicity flips)
- to NLO, yields 4 gluon transversity GPDs (TT photon helicity flips)
- twist-4 accuracy pushes ambiguity to the 1/Q⁴ level [Braun, Manashov 12]₆ but yields new parton correlation functions, however, no new structures

Our first proposal for DVCS tensor

embed perturbative results in a physical parameterization

$$\xi \Rightarrow \xi = \frac{x_{\rm B} \left(2Q^2 + t\right)/2}{2 - x_{\rm B} + x_{\rm B} \frac{t}{Q^2}} = \frac{2Q^2 + t}{s - u} \qquad \text{NOTE} \\ q_1 \cdot q_2 = Q^2 + t \\ g_{\mu\nu} \Rightarrow \tilde{g}_{\mu\nu} = \mathcal{P}_{\mu\tau} g^{\tau\sigma} \mathcal{P}_{\sigma\nu}, \cdots, \text{ with } \mathcal{P}_{\mu\nu} = g_{\mu\nu} - \frac{q_{1\mu}q_{2\nu}}{q_1 \cdot q_2}$$

take your favored tensor structure (partially inspired from DIS tensor)

$$T_{\mu\nu} = -\tilde{g}_{\sigma\tau} \frac{q \cdot V_{1}}{P \cdot q} + \left(\tilde{P}_{\mu} \mathcal{P}_{\rho\nu} + \mathcal{P}_{\mu\rho} \tilde{P}_{\nu}\right) \frac{V_{2\rho}}{P \cdot q} - i\tilde{\epsilon}_{\sigma\tau q\rho} \frac{A_{1\rho}}{P \cdot q} + \tilde{\tau}_{\mu\nu}^{\perp \alpha\beta} G_{\alpha\beta}^{T}$$

$$V_{2\rho} = \xi V_{1\rho} - \frac{\xi}{2} \frac{P_{\rho}}{P \cdot q} q \cdot V_{1} + \frac{i}{2} \frac{\epsilon_{\rho\sigma\Delta q}}{P \cdot q} A_{1\sigma}$$

$$V_{1\rho} = P_{\rho} \frac{q \cdot h}{q \cdot P} \mathcal{H} + P_{\rho} \frac{q \cdot e}{q \cdot P} \mathcal{E} + \Delta_{\rho}^{\perp} \frac{q \cdot h}{q \cdot P} \mathcal{H}_{+}^{3} + \Delta_{\rho}^{\perp} \frac{q \cdot e}{q \cdot P} \mathcal{E}_{+}^{3} + \tilde{\Delta}_{\rho}^{\perp} \frac{q \cdot \tilde{h}}{q \cdot P} \tilde{\mathcal{H}}_{-}^{3} + \tilde{\Delta}_{\rho}^{\perp} \frac{q \cdot \tilde{e}}{q \cdot P} \tilde{\mathcal{E}}_{-}^{3}$$

$$A_{1\rho} = P_{\rho} \frac{q \cdot \tilde{h}}{q \cdot P} \tilde{\mathcal{H}} + P_{\rho} \frac{q \cdot \tilde{e}}{q \cdot P} \tilde{\mathcal{E}} + \Delta_{\rho}^{\perp} \frac{q \cdot \tilde{h}}{q \cdot P} \tilde{\mathcal{H}}_{+}^{3} + \Delta_{\rho}^{\perp} \frac{q \cdot \tilde{e}}{q \cdot P} \tilde{\mathcal{E}}_{+}^{3} + \tilde{\Delta}_{\rho}^{\perp} \frac{q \cdot h}{q \cdot P} \mathcal{H}_{-}^{3} + \tilde{\Delta}_{\rho}^{\perp} \frac{q \cdot e}{q \cdot P} \mathcal{E}_{-}^{3}$$

$$h_{\rho} = \bar{u}_{2} \gamma_{\rho} u_{1}, \quad e_{\rho} = \bar{u}_{2} i \sigma_{\rho\sigma} \frac{\Delta^{\sigma}}{2M} u_{1}, \quad \tilde{h}_{\rho} = \bar{u}_{2} \gamma_{\rho} \gamma_{5} u_{1}, \quad \tilde{e}_{\rho} = \frac{\Delta_{\rho}}{2M} \bar{u}_{2} \gamma_{5} u_{1}$$

$$G_{\alpha\beta}^{T} = \frac{\Delta_{\alpha}}{2M} \bar{u}_{2} \left\{ H_{T} \frac{q^{\gamma}}{P \cdot q} i \sigma_{\gamma\beta} + \tilde{H}_{T} \frac{\Delta_{\beta}}{2M^{2}} + E_{T} \frac{1}{2M} \left(\frac{\gamma \cdot q}{P \cdot q} \Delta_{\beta} - \eta \gamma_{\beta} \right) - \tilde{E}_{T} \frac{\gamma_{\beta}}{2M} \right\} u_{1} \qquad 7$$

Other proposals

- Prange(1958) in terms of Dirac-spinors
- Hearn, Leader (1962) Pauli-spinor representation

e.g., used for generalized polarizabilities proposed by Guichon et al. (1995)

$$\mathcal{N}^{-1} T^{VCS}(\lambda = 0) = a^{l} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} + i \Big[b_{1}^{l} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \times \hat{q}^{\prime} \vec{\sigma} \cdot \vec{e} (1) + b_{2}^{l} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \vec{\sigma} \cdot \vec{e} (2) + b_{3}^{l} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \times \hat{q}^{\prime} \vec{\sigma} \cdot \vec{e} (3) \Big] \mathcal{N}^{-1} T^{VCS}(\lambda = \pm 1) = a^{t} \vec{\varepsilon}^{\prime \star} \cdot \vec{\varepsilon} + a^{t\prime} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \vec{\varepsilon} \cdot \hat{q}^{\prime} + i (b_{1}^{t} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \vec{\varepsilon} \cdot \hat{q} \times \hat{q}^{\prime} + b_{1}^{t\prime} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \times \hat{q}^{\prime} \vec{\varepsilon} \cdot \hat{q}^{\prime}) \vec{\sigma} \cdot \vec{e} (1) + i (b_{2}^{t} \vec{\varepsilon}^{\prime \star} \cdot \vec{\varepsilon} + b_{2}^{t\prime} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \vec{\varepsilon} \cdot \hat{q}^{\prime}) \vec{\sigma} \cdot \vec{e} (2) + i (b_{3}^{t} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \vec{\varepsilon} \cdot \hat{q} \times \hat{q}^{\prime} + b_{3}^{t\prime} \vec{\varepsilon}^{\prime \star} \cdot \hat{q} \times \hat{q}^{\prime} \vec{\varepsilon} \cdot \hat{q}^{\prime}) \vec{\sigma} \cdot \vec{e} (3).$$
 used to express helicity amplitudes in terms of 10 (6)
multipols

- Tarrach (1975) tensor structure, Dirac representation free of kinematical singularities
- relating Prange to Tarrach parameterization, e.g., in Drechsel et al. (1997)
- to express Tarrach`s functions in terms of 10 (6) multipols
- used in dispersion relation approach to VCS Drechsel et al. (2002)
- used by us to express CFFs in terms of 10 (6) multipols

The so-obtained basis of gauge invariant tensors is expected to be minimal and pole free by construction and is the following one :

Tarrach (1975)

? minimal

$$\begin{split} & \Upsilon_{1} = k \cdot k' \ T_{1} - T_{3} \\ & \mathcal{Y}_{2} = k^{2} k'^{2} \ T_{1} + k \cdot k' \ T_{4} - \frac{k' + k''}{2} \ T_{6} + \frac{k' + k''}{2} \ T_{7} + \frac{k' + k''}{2} \ T_{7} + k \cdot k' \ T_{9} \\ & \mathcal{Y}_{9} = \ell \cdot K \ / k^{2} + k'^{2} \ T_{1} - \ell \cdot K \ T_{9} - \frac{k^{2} + k''}{2} \ T_{7} + \frac{k' + k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} + k \cdot k' \ T_{9} \\ & \mathcal{Y}_{5} = -\ell \cdot K \ / k^{2} - k'' \ T_{7} + \ell \cdot K \ T_{5} + \frac{k' + k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} + \frac{k' + k''}{2} \ T_{7} \\ & - \ell \cdot K \ T_{2} - \frac{k' + k''}{2} \ T_{7} \\ & + \frac{k' \cdot k''}{2} \ T_{7} \\ & + \frac{k' \cdot k''}{2} \ T_{7} - \frac{k' + k''}{2} \ T_{7} \\ & + \frac{k' \cdot k''}{2} \ T_{7} \\ & - \ell \cdot K \ T_{2} - \frac{k' + k''}{2} \ T_{2} \\ & - \frac{k' \cdot k''}{2} \ T_{7} \\ & - \ell \cdot K \ T_{2} \\ & - \frac{k' \cdot k''}{2} \ T_{7} \\ & - \ell \cdot K \ T_{7$$

Our second proposal (making live simple)

parameterize 3 independent helicity amplitudes in terms of 4 CFFs

$$\begin{aligned}
\mathcal{T}_{ab}^{\text{VCS}}(\phi) &= (-1)^{a-1} \varepsilon_{2}^{\mu*}(b) T_{\mu\nu} \varepsilon_{1}^{\nu}(a) & \text{(proton at rest)} \\
\mathcal{T}_{ab}^{\text{VCS}} &= \mathcal{V}(\mathcal{F}_{ab}) - b \,\mathcal{A}(\mathcal{F}_{ab}) & \text{for} \quad a \in \{0, +, -\}, \ b \in \{+, -\} \\
\mathcal{V}(\mathcal{F}_{ab}) &= \bar{u}_{2} \left(\not m \mathcal{H}_{ab} + i \sigma_{\alpha\beta} \frac{m^{\alpha} \Delta^{\beta}}{2M} \,\mathcal{E}_{ab} \right) u_{1} \\
\mathcal{A}(\mathcal{F}_{ab}) &= \bar{u}_{2} \left(\not m \gamma_{5} \,\widetilde{\mathcal{H}}_{ab} + \gamma_{5} \frac{m \cdot \Delta}{2M} \,\widetilde{\mathcal{E}}_{ab} \right) u_{1}
\end{aligned}$$

What is the best choice of m^{μ} (corresponds to light cone vector)?

free nucleon Dirac equation is used to reduce choices (polarization vectors are given in terms of physical momenta) $m^{\mu} = q^{\mu} / P.q$ is free of kinematical singularities and respects Bose symmetry (except if s=u which appears in the low energy limit)

kinematical singularities can be cured by switching to ``electric" CFFs

$$\mathcal{G}_{ab} = \mathcal{H}_{ab} + \frac{t}{4M^2} \mathcal{E}_{ab}$$
 and $\widetilde{\mathcal{G}}_{ab} = \widetilde{\mathcal{H}}_{ab} + \frac{t}{4M^2} \widetilde{\mathcal{E}}_{ab}$ for $a \neq b_{10}$

Constructing a Compton tensor

requirements:

- manifest current conservation and Bose symmetry
- a close match with conventions used in deeply virtual Compton kinematics
 singularity-free kinematical dependence

$$\pm 1 \rightarrow \pm 1; \quad g_{\mu\nu}^{\perp} \rightarrow \quad \widetilde{g}_{\mu\nu} = g_{\mu\nu} - \frac{q_{1\mu}p_{\nu}}{p \cdot q} - \frac{q_{2\nu}p_{\mu}}{p \cdot q} + \frac{q_{1} \cdot q_{2}}{p \cdot q} \frac{p_{\mu}p_{\nu}}{p \cdot q}$$

$$\varepsilon_{\mu\nu}^{\perp} \rightarrow \quad \widetilde{\varepsilon}_{\mu\nu} = \frac{1}{p \cdot q} \left[\varepsilon_{\mu\nu pq} + \frac{p_{\mu}}{2p \cdot q} \varepsilon_{\Delta\nu pq} - \varepsilon_{\mu\Delta pq} \frac{p_{\nu}}{2p \cdot q} + \varepsilon_{\mu\nu\Delta q} \frac{p \cdot p}{2p \cdot q} \right]$$

$$\pm 1 \rightarrow \mp 1; \quad \tau_{\mu\nu;\rho\sigma}^{\perp} \frac{\Delta^{\rho}T^{\sigma}}{M^{2}} \rightarrow \quad \left(g_{\mu}^{\alpha} - \frac{p_{\mu}q_{2}^{\alpha}}{p \cdot q} \right) \left(g_{\nu}^{\beta} - \frac{p_{\nu}q_{1}^{\beta}}{p \cdot q} \right) \\ \tau_{\alpha\beta;\rho\sigma}^{\perp} \frac{\Delta^{\rho}T^{\sigma}}{M^{2}}$$

$$0 \rightarrow \pm 1: \quad \left(q_{2\mu} - \frac{q_{2}^{2}}{p \cdot q} p_{\mu} \right) \left(g_{\nu\rho} - \frac{p_{\nu}q_{1}^{\rho}}{p \cdot q} \right) \quad \text{and} \quad \left(q_{1\nu} - \frac{q_{1}^{2}}{p \cdot q} p_{\nu} \right) \left(g_{\mu\rho} - \frac{p_{\mu}q_{2}^{\rho}}{p \cdot q} \right)$$

$$0 \rightarrow 0: \quad \left(q_{2\mu} - \frac{q_{2}^{2}}{p \cdot q} p_{\mu} \right) \left(q_{1\nu} - \frac{q_{1}^{2}}{p \cdot q} p_{\nu} \right)$$

$$\begin{split} T_{\mu\nu} &= -\widetilde{g}_{\mu\nu} \frac{q \cdot V_{\rm T}}{p \cdot q} + i\widetilde{\varepsilon}_{\mu\nu} \frac{q \cdot A_{\rm T}}{p \cdot q} + \left(q_{2\,\mu} - \frac{q_{2}^{2}}{p \cdot q}p_{\mu}\right) \left(q_{1\,\nu} - \frac{q_{1}^{2}}{p \cdot q}p_{\nu}\right) \frac{q \cdot V_{\rm L}}{p \cdot q} \\ &+ \left(q_{1\,\nu} - \frac{q_{1}^{2}}{p \cdot q}p_{\nu}\right) \left(g_{\mu\rho} - \frac{p_{\mu}q_{2\,\rho}}{p \cdot q}\right) \left[\frac{V_{\rm LT}^{\rho}}{p \cdot q} + \frac{i\epsilon^{\rho}_{qp\sigma}}{p \cdot q} \frac{A_{\rm LT}^{\sigma}}{p \cdot q}\right] \\ &+ \left(q_{2\,\mu} - \frac{q_{2}^{2}}{p \cdot q}p_{\mu}\right) \left(g_{\nu\rho} - \frac{p_{\nu}q_{1\,\rho}}{p \cdot q}\right) \left[\frac{V_{\rm TL}^{\rho}}{p \cdot q} + \frac{i\epsilon^{\rho}_{qp\sigma}}{p \cdot q} \frac{A_{\rm TL}^{\sigma}}{p \cdot q}\right] \\ &+ \left(g_{\mu}^{\ \rho} - \frac{p_{\mu}q_{2}^{\rho}}{p \cdot q}\right) \left(g_{\nu}^{\ \sigma} - \frac{p_{\nu}q_{1}^{\sigma}}{p \cdot q}\right) \left[\frac{\Delta_{\rho}\Delta_{\sigma} + \widetilde{\Delta}_{\rho}^{\perp}\widetilde{\Delta}_{\sigma}^{\perp}}{2M^{2}} \frac{q \cdot V_{\rm TT}}{p \cdot q} + \frac{\Delta_{\rho}\widetilde{\Delta}_{\sigma}^{\perp} + \widetilde{\Delta}_{\rho}^{\perp}\Delta_{\sigma}}{2M^{2}} \frac{q \cdot A_{\rm TT}}{p \cdot q}\right] \\ & \text{with} \qquad \Delta_{\sigma}^{\perp} = \Delta_{\sigma} - \frac{\Delta \cdot q}{q \cdot P}P_{\sigma} \quad \text{and} \quad \widetilde{\Delta}_{\sigma}^{\perp} = \varepsilon_{\sigma\Delta pq}/p \cdot q \end{split}$$

relations of these CFFs to helicity dependent CFFs are easily calculated:

$$\begin{aligned} \mathcal{F}_{+b} &= \left[\frac{1+b\sqrt{1+\epsilon^2}}{2\sqrt{1+\epsilon^2}} + \frac{(1-x_{\rm B})x_{\rm B}^2(4M^2-t)\left(1+\frac{t}{Q^2}\right)}{Q^2\sqrt{1+\epsilon^2}\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)^2} \right] \mathcal{F}_{\rm T} \\ &+ \frac{1-b\sqrt{1+\epsilon^2}}{2\sqrt{1+\epsilon^2}} \frac{\tilde{K}^2}{M^2\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)^2} \mathcal{F}_{\rm TT} + \frac{2x_{\rm B}\tilde{K}^2}{Q^2\sqrt{1+\epsilon^2}\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)^2} \mathcal{F}_{\rm LT} \\ \mathcal{F}_{0+} &= \frac{\sqrt{2}\tilde{K}}{\sqrt{1+\epsilon^2}\mathcal{Q}\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)} \left\{ \left[1 + \frac{2x_{\rm B}^2\left(4M^2-t\right)}{Q^2\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)} \right] \mathcal{F}_{\rm LT} \\ &+ x_{\rm B} \left[1 + \frac{2x_{\rm B}(4M^2-t)}{Q^2\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)} \right] \mathcal{F}_{\rm T} + x_{\rm B} \left[2 - \frac{4M^2-t}{M^2\left(2-x_{\rm B}+\frac{x_{\rm B}t}{Q^2}\right)} \right] \mathcal{F}_{\rm TT} \right\} \end{aligned}$$

Photon leptoproduction $e^{\pm}N \rightarrow e^{\pm}N\gamma$

interference of **DVCS** and **Bethe-Heitler** processes

VCS amplitude square

$$\mathcal{T}^{\mathrm{VCS}}|^{2} = \frac{1}{\mathcal{Q}^{2}} \sum_{a=-,0,+} \sum_{b=-,0,+} \mathcal{L}_{ab}(\lambda,\phi) \mathcal{W}_{ab}$$
$$\mathcal{W}_{ab} = \mathcal{T}^{\mathrm{VCS}}_{a+} \left(\mathcal{T}^{\mathrm{VCS}}_{b+}\right)^{*} + \mathcal{T}^{\mathrm{VCS}}_{a-} \left(\mathcal{T}^{\mathrm{VCS}}_{b-}\right)^{*}$$

CFFs are contained in 4 bilinear combinations

$$\sum_{S'} \left[\mathcal{V}(\mathcal{F}) + \mathcal{A}(\mathcal{F}) \right] \left[\mathcal{V}^{\dagger}(\mathcal{F}^{*}) + \mathcal{A}^{\dagger}(\mathcal{F}^{*}) \right] = \left[\mathcal{C}_{unp}^{VCS} + \Lambda \cos(\theta) \frac{1}{\sqrt{1 + \epsilon^{2}}} \mathcal{C}_{LP}^{VCS} + \Lambda \sin(\theta) \sin(\varphi) \frac{i\widetilde{K}}{2M} \mathcal{C}_{TP-}^{VCS} + \Lambda \sin(\theta) \cos(\varphi) \frac{\widetilde{K}}{2M\sqrt{1 + \epsilon^{2}}} \mathcal{C}_{TP+}^{VCS} \right] (\mathcal{F}, \mathcal{F}^{*})$$

common leptonic helicity amplitudes

elastic form factors

 F_1, F_2

$$\mathcal{L}_{++}(\lambda) = \frac{1}{y^2(1+\epsilon^2)} \left(2 - 2y + y^2 + \frac{\epsilon^2}{2}y^2\right) - \frac{2 - y}{\sqrt{1+\epsilon^2}y}\lambda$$
$$\mathcal{L}_{00} = \frac{4}{y^2(1+\epsilon^2)} \left(1 - y - \frac{\epsilon^2}{4}y^2\right)$$
$$\mathcal{L}_{0+}(\lambda,\phi) = \frac{2 - y - \lambda y\sqrt{1+\epsilon^2}}{y^2(1+\epsilon^2)}\sqrt{2}\sqrt{1 - y - \frac{\epsilon^2}{4}y^2} e^{-i\phi}$$
$$\mathcal{L}_{+-}(\phi) = \frac{2}{y^2(1+\epsilon^2)} \left(1 - y - \frac{\epsilon^2}{4}y^2\right) e^{i2\phi}$$

harmonic expansion of VCS square

$$|\mathcal{T}^{\text{VCS}}(\phi,\varphi)|^2 = \frac{e^6}{y^2 \mathcal{Q}^2} \left\{ c_0^{\text{VCS}}(\varphi) + \sum_{n=1}^2 \left[c_n^{\text{VCS}}(\varphi) \, \cos(n\phi) + s_n^{\text{VCS}}(\varphi) \, \sin(n\phi) \right] \right\}$$

harmonics for unpolarized target

$$\begin{split} c_{0,\mathrm{unp}}^{\mathrm{VCS}} &= 2 \frac{2 - 2y + y^2 + \frac{\epsilon^2}{2} y^2}{1 + \epsilon^2} \, \mathcal{C}_{\mathrm{unp}}^{\mathrm{VCS}}(\mathcal{F}_{++}, \mathcal{F}_{++}^* \big| \mathcal{F}_{-+}, \mathcal{F}_{-+}^*) + 8 \frac{1 - y - \frac{\epsilon^2}{4} y^2}{1 + \epsilon^2} \, \mathcal{C}_{\mathrm{unp}}^{\mathrm{VCS}}(\mathcal{F}_{0+}, \mathcal{F}_{0+}^*) \,, \\ \left\{ \begin{array}{c} c_{1,\mathrm{unp}}^{\mathrm{VCS}} \\ s_{1,\mathrm{unp}}^{\mathrm{VCS}} \end{array} \right\} &= \frac{4\sqrt{2}\sqrt{1 - y - \frac{\epsilon^2}{4} y^2}}{1 + \epsilon^2} \, \left\{ \begin{array}{c} 2 - y \\ -\lambda y \sqrt{1 + \epsilon^2} \end{array} \right\} \left\{ \begin{array}{c} \Re e \\ \Im m \end{array} \right\} \, \mathcal{C}_{\mathrm{unp}}^{\mathrm{VCS}}\left(\mathcal{F}_{0+} \big| \mathcal{F}_{++}^*, \mathcal{F}_{-+}^*\right) \,, \\ \end{array} \right. \end{split}$$

$$c_{2,\mathrm{unp}}^{\mathrm{VCS}} = 8 \frac{1-y-\frac{1}{4}y}{1+\epsilon^2} \Re e \,\mathcal{C}_{\mathrm{unp}}^{\mathrm{VCS}}\left(\mathcal{F}_{-+},\mathcal{F}_{++}^*\right)$$

in terms of bilinear CFF combinations

$$\mathcal{C}_{\mathrm{unp}}^{\mathrm{VCS}} = \frac{4(1-x_{\mathrm{B}})\left(1+\frac{x_{\mathrm{B}}t}{\mathcal{Q}^{2}}\right)}{\left(2-x_{\mathrm{B}}+\frac{x_{\mathrm{B}}t}{\mathcal{Q}^{2}}\right)^{2}} \left[\mathcal{H}\mathcal{H}^{*}+\widetilde{\mathcal{H}}\widetilde{\mathcal{H}}^{*}\right] + \frac{\left(2+\frac{t}{\mathcal{Q}^{2}}\right)\epsilon^{2}}{\left(2-x_{\mathrm{B}}+\frac{x_{\mathrm{B}}t}{\mathcal{Q}^{2}}\right)^{2}}\widetilde{\mathcal{H}}\widetilde{\mathcal{H}}^{*} - \frac{t}{4M^{2}}\mathcal{E}\mathcal{E}^{*}$$
$$-\frac{x_{\mathrm{B}}^{2}}{\left(2-x_{\mathrm{B}}+\frac{x_{\mathrm{B}}t}{\mathcal{Q}^{2}}\right)^{2}}\left\{\left(1+\frac{t}{\mathcal{Q}^{2}}\right)^{2}\left[\mathcal{H}\mathcal{E}^{*}+\mathcal{E}\mathcal{H}^{*}+\mathcal{E}\mathcal{E}^{*}\right]+\widetilde{\mathcal{H}}\widetilde{\mathcal{E}}^{*}+\widetilde{\mathcal{E}}\widetilde{\mathcal{H}}^{*}+\frac{t}{4M^{2}}\widetilde{\mathcal{E}}\widetilde{\mathcal{E}}^{*}\right\}$$

+ 3 other sets of harmonics for longitudinally and transversally polarized proton with 3 different bilinear combinations

□ interference term

$$\mathcal{I} = \frac{\pm e^6}{t \,\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{a=-,0,+} \sum_{b=-,+} \sum_{S'} \left\{ \mathcal{L}^{\rho}_{ab}(\lambda,\phi)\mathcal{T}_{ab}J^{\dagger}_{\rho} + \left(\mathcal{L}^{\rho}_{ab}(\lambda,\phi)\mathcal{T}_{ab}J^{\dagger}_{\rho}\right)^* \right\}$$

additional ϕ -dependence stems from (scaled) BH propagators (up to second even harmonics)

leptonic part is straightforward to treat (a bit cumbersome)

hadronic part yields now 4 linear combinations of CFFs + their addenda

$$\begin{split} \sum_{S'} \mathcal{V}(\mathcal{F}) J_{\rho}^{\dagger} &= p_{\rho} \left[\mathcal{C}_{\mathrm{unp}}^{\mathcal{I}}(\mathcal{F}) - \mathcal{C}_{\mathrm{unp}}^{\mathcal{I},A} \right] (\mathcal{F}) + 2q_{\rho} \frac{t}{Q^{2}} \mathcal{C}_{\mathrm{unp}}^{\mathcal{I},V}(\mathcal{F}) \\ &- p_{\rho} \frac{\Lambda \sin(\theta) \sin(\varphi) M}{i\tilde{K}} \left[\mathcal{C}_{\mathrm{TP-}}^{\mathcal{I}} - \mathcal{C}_{\mathrm{TP-}}^{\mathcal{I},A} \right] (\mathcal{F}) - 2q_{\rho} \frac{t}{Q^{2}} \frac{\Lambda \sin(\theta) \sin(\varphi) M}{i\tilde{K}} \mathcal{C}_{\mathrm{TP-}}^{\mathcal{I},V}(\mathcal{F}) \\ &+ \frac{2i\varepsilon_{pq\Delta\rho}}{Q^{2}} \left[\frac{\Lambda \cos(\theta)}{\sqrt{1 + \epsilon^{2}}} \mathcal{C}_{\mathrm{LP}}^{\mathcal{I},V} + \frac{\Lambda \sin(\theta) \cos(\varphi) M}{\sqrt{1 + \epsilon^{2}} \tilde{K}} \mathcal{C}_{\mathrm{TP+}}^{\mathcal{I},V} \right] (\mathcal{F}) \\ &\sum_{S'} \mathcal{A}(\mathcal{F}) J_{\rho}^{\dagger} = p_{\rho} \frac{\Lambda \cos(\theta)}{\sqrt{1 + \epsilon^{2}}} \left[\mathcal{C}_{\mathrm{LP}}^{\mathcal{I}} - \mathcal{C}_{\mathrm{LP}}^{\mathcal{I},V} \right] (\mathcal{F}) + 2q_{\rho} \frac{t}{Q^{2}} \frac{\Lambda \cos(\theta)}{\sqrt{1 + \epsilon^{2}}} \mathcal{C}_{\mathrm{LP}}^{\mathcal{I},A} (\mathcal{F}) \\ &+ p_{\rho} \frac{\Lambda \sin(\theta) \cos(\varphi) M}{\sqrt{1 + \epsilon^{2}} \tilde{K}} \left[\mathcal{C}_{\mathrm{TP+}}^{\mathcal{I}} - \mathcal{C}_{\mathrm{TP+}}^{\mathcal{I},V} \right] (\mathcal{F}) + 2q_{\rho} \frac{t}{Q^{2}} \frac{\Lambda \sin(\theta) \cos(\varphi) M}{\sqrt{1 + \epsilon^{2}} \tilde{K}} \mathcal{C}_{\mathrm{TP+}}^{\mathcal{I},A} (\mathcal{F}) \\ &+ \frac{2i\varepsilon_{pq\Delta\rho}}{Q^{2}} \left[\mathcal{C}_{\mathrm{unp}}^{\mathcal{I},A} - \frac{\Lambda \sin(\theta) \sin(\varphi) M}{i\tilde{K}} \mathcal{C}_{\mathrm{TP-}}^{\mathcal{I},A} \right] (\mathcal{F}). \end{split}$$

harmonic expansion of interference term

$$\begin{aligned} \mathcal{I}(\phi,\varphi) &= \frac{\pm e^{6}}{x_{\mathrm{B}}y^{3}t\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \left[\sum_{n=0}^{3} c_{n,\mathrm{S}}^{\mathcal{I}}(\varphi) \cos(n\phi) + \sum_{n=1}^{3} s_{n,\mathrm{S}}^{\mathcal{I}}(\varphi) \sin(n\phi) \right] \\ c_{0,\mathrm{unp}}^{\mathcal{I}} &= C_{++}(0) \operatorname{\Ree} \mathcal{C}_{++,\mathrm{unp}}^{\mathcal{I}}(0|\mathcal{F}_{++}) + \{_{++} \rightarrow \ _{0+}\} + \{_{++} \rightarrow \ _{-+}\} \\ \left\{ \frac{c_{1}^{\mathcal{I}}}{s_{1}^{\mathcal{I}}} \right\}_{\mathrm{unp}} &= \left\{ \frac{C_{++}(1)}{\lambda S_{++}(1)} \right\} \left\{ \operatorname{\Ree}_{\mathrm{Sm}} \right\} \left\{ \frac{\mathcal{C}_{++}^{\mathcal{I}}(1|\mathcal{F}_{++})}{\mathcal{S}_{++}^{\mathcal{I}}(1|\mathcal{F}_{++})} \right\}_{\mathrm{unp}} + \{_{++} \rightarrow \ _{0+}\} + \{_{++} \rightarrow \ _{-+}\} \\ \left\{ \frac{c_{2}^{\mathcal{I}}}{s_{2}^{\mathcal{I}}} \right\}_{\mathrm{unp}} &= \left\{ \frac{C_{0+}(2)}{\lambda S_{0+}(2)} \right\} \left\{ \operatorname{\Ree}_{\mathrm{Sm}} \right\} \left\{ \frac{\mathcal{C}_{0+}^{\mathcal{I}}(2|\mathcal{F}_{0+})}{\mathcal{S}_{0+}^{\mathcal{I}}(2|\mathcal{F}_{0+})} \right\}_{\mathrm{unp}} + \{_{0+} \rightarrow \ _{++}\} + \{_{0+} \rightarrow \ _{-+}\} \\ c_{3,\mathrm{unp}}^{\mathcal{I}} &= C_{-+}(3) \operatorname{\Ree} \mathcal{C}_{-+,\mathrm{unp}}^{\mathcal{I}}(3|\mathcal{F}_{-+}) + \{_{-+} \rightarrow \ _{++}\} + \{_{-+} \rightarrow \ _{0+}\} \end{aligned}$$

$$\begin{aligned} \mathcal{C}_{\rm unp}^{\mathcal{I}}(\mathcal{F}) &= F_1 \mathcal{H} - \frac{v}{4M^2} F_2 \mathcal{E} + \frac{x_{\rm B}}{2 - x_{\rm B} + \frac{x_{\rm B}t}{Q^2}} (F_1 + F_2) \mathcal{H} \\ \mathcal{C}_{\rm unp}^{\mathcal{I},V}(\mathcal{F}) &= \frac{x_{\rm B}}{2 - x_{\rm B} + \frac{x_{\rm B}t}{Q^2}} (F_1 + F_2) (\mathcal{H} + \mathcal{E}) \\ \mathcal{C}_{\rm unp}^{\mathcal{I},A}(\mathcal{F}) &= \frac{x_{\rm B}}{2 - x_{\rm B} + \frac{x_{\rm B}t}{Q^2}} (F_1 + F_2) \widetilde{\mathcal{H}} \end{aligned}$$

+ 3 sets for polarized CFF combinations + 12 pages of leptonic coefficients

17

$$\begin{aligned} |\mathcal{T}_{\rm BH}|^2 &= \frac{e^6(1+\epsilon^2)^{-2}}{x_{\rm Bj}^2 y^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos\left(n\phi\right) + s_n^{\rm BH} \sin\left(\phi\right) \right\} \begin{array}{l} \text{exactly known} \\ \text{(LO, QED)} \\ \text{harmonics} \\ \mathcal{T}_{\rm VCS}|^2 &= \frac{e^6}{y^2 \mathcal{Q}^2} \left\{ c_0^{\rm VCS} + \sum_{n=1}^2 \left[c_n^{\rm VCS} \cos(n\phi) + s_n^{\rm VCS} \sin(n\phi) \right] \right\} \\ \mathcal{I} &= \frac{\pm e^6}{x_{\rm Bj} y^3 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\rm INT} + \sum_{n=1}^3 \left[c_n^{\rm INT} \cos(n\phi) + s_n^{\rm INT} \sin(n\phi) \right] \right\} \\ \begin{array}{l} \text{harmonics} \\ \text{harmonics} \\ \text{harmonics} \\ \text{harmonics} \\ \text{helicity ampl.} \end{array} \right\} \\ \text{harmonics} \\ \text{harmonics$$

- both kinds of leptons allows to access the interference term and BH² +DVCS²
- in principle, one can extract all 12 CFFs (24 functions)

sector		harmonics in \mathcal{I}			extraction	P of	Δ^l_\perp behavior		
twist	\mathcal{C} 's	unp	LP	TP_x	TP_y	of CFFs	\mathcal{Q}^{-P}	unp, LP	TP
two	$\Re e \mathcal{C}(\mathcal{F}), \ \Delta \mathcal{C}(\mathcal{F})$	c_1, c_0	c_1, c_0	c_1, c_0	$s_1, -$	over compl.	1,2	1,0	0,1
	$\Im m \mathcal{C}(\mathcal{F}), \ \Delta \mathcal{C}(\mathcal{F})$	<i>s</i> ₁ , -	<i>s</i> ₁ , -	<i>s</i> ₁ , -	c_1, c_0	over compl.	1,2	1,0	0,1
three	$\Re e \mathcal{C}(\mathcal{F}^{\mathrm{eff}})$	c_2	c_2	c_2	s_2	complete	2	2	1
	$\Im m \mathcal{C}(\mathcal{F}^{\mathrm{eff}})$	s_2	s_2	s_2	c_2	$\operatorname{complete}$	2	2	1
two	$\Re e \mathcal{C}_T(\mathcal{F}_T)$	C3	-	-	-	$1\times \Re e$ of 4	1	3	2
	$\Im \mathcal{C}_T(\mathcal{F}_T)$	-	s_3	s_3	c_3	$3\times \Im m$ of 4	1	3	2

Harmonic analysis and Rosenbluth separation

naively, one would think that in the charge odd sector one should take

$$\begin{cases} c_n^{\rm INT} \\ s_n^{\rm INT} \end{cases} \propto \frac{1}{\pi} \int_{-\pi}^{\pi} d\phi \, \mathcal{P}_1(\phi|y) \mathcal{P}_2(\phi|y) \left\{ \cos(n\phi) \\ \sin(n\phi) \right\} \left[\frac{d\sigma^+}{d\phi \cdots} - \frac{d\sigma^-}{d\phi \cdots} \right]$$

however, Rosenbluth separation looks cumbersome

? how looks the *y*-dependence if one takes common Fourier analysis (important in near future for JLAB@12 experiments)

$$\begin{cases} c_n^{\rm BH}(y) + c_n^{\rm INT}(y) + c_n^{\rm VCS}(y) \\ s_n^{\rm BH}(y) + s_n^{\rm INT}(y) + s_n^{\rm VCS}(y) \end{cases} \propto \frac{1}{\pi} \int_{-\pi}^{\pi} d\phi \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \frac{d\sigma^-}{d\phi \cdots}$$

$$\begin{array}{l}
\textbf{n=0 case} \\
(\text{Hand convention}) \\
\frac{d\sigma^{\text{TOT}}}{dt} = \frac{y^2 \left[\frac{d\sigma_{\text{T}}^{\text{BH}}}{dt} + \varepsilon(y) \frac{d\sigma_{\text{L}}^{\text{BH}}}{dt} \right]}{\left(1 - y \frac{(1 - x_{\text{B}})t}{Q^2 + t} \right) \left(\frac{Q^2 + t}{Q^2 + x_{\text{B}}t} - y \right)} \\
\end{array}$$

$$\begin{array}{l}
\text{transverse photon} \\
\text{asymmetry} \\
\text{isophatric} \\
\text{is$$

stems from BH propagators

BH-propagators dies out

Real photon limit and low energy limit setting $x_{\rm B} = \frac{Q^2}{s + Q^2 - M^2}$ with $s = (q_1 + p_1)^2$

taking real photon limit $Q^2 \rightarrow 0$ of VCS cross section for a point particle yields Klein-Nishina formula (here generalized for polarized proton)

$$\frac{d^2\sigma}{d\cos(\theta_{\gamma\gamma})d\varphi} = \frac{R^2}{2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2(\theta_{\gamma\gamma}) + \lambda\Lambda\left(\frac{\omega}{\omega'} - \frac{\omega'}{\omega}\right)\cos(\theta_{\gamma\gamma})\cos(\theta) - \lambda\Lambda\left(1 - \frac{\omega'}{\omega}\right)\sin(\theta_{\gamma\gamma})\sin(\theta)\cos(\varphi)\right]$$

peculiarities of low energy limit in VCS (center-of-mass frame)

$$q_{1} = (\sqrt{\omega'^{2} + M^{2}} + \omega' - \sqrt{\bar{q}^{2} + M^{2}}, 0, 0, \bar{q}) \quad q_{2} = (\omega', \omega' \sin \vartheta, 0, \omega' \cos \vartheta)$$

$$p_{1} = (\sqrt{\bar{q}^{2} + M^{2}}, 0, 0, -\bar{q}) \quad p_{2} = (\sqrt{\omega'^{2} + M^{2}}, -\omega' \sin \vartheta, 0, -\omega' \cos \vartheta)$$

$$\lim_{\omega' \to 0} \mathcal{F}_{ab} = \left[\frac{1}{\omega'} \mathcal{F}_{ab}^{\mathrm{Born}, -1} + \mathcal{F}_{ab}^{\mathrm{Born}, 0} + \omega' \mathcal{F}_{ab}^{\mathrm{Born}, 1}\right] + \omega' \mathcal{F}_{ab}^{\mathrm{non-Born}, 1} (6 \mathrm{multipols}) + \omega'^{2}$$

NOTE

subtraction of singularities is done in experiment by Monte-Carlo simulations electromagnetic form factors of Born term depend on ω'

DVCS data and perspectives

existing data

including longitudinal and transverse polarized proton data

new data

HERMES (recoil detector data)

JLAB (longitudinal TSA, cross sections)

planned

COMPASS II, JLAB 12

proposed

EIC

current DVCS data at colliders: 10³L O ZEUS- total xsec □ H1- total xsec • ZEUS- $d\sigma/dt$ H1- $d\sigma/dt$ HI-A_{CU} $Q^2 [GeV^2]$ current DVCS data at fixed targets: ▲ HERMES- A_{LT} ▲ HERMES- A_{CU} HERMES- A_{LU}, A_{UL}, A_{LL} HERMES- A_{UT} **★** Hall A- CFFs * CLAS- ALU * CLAS- AUL $0^2 \pm 100$ Gc 10^{2} planed DVCS at fixed targ.: COMPASS- do/dt, Acsu, Acsu JLAB12- $d\sigma/dt$, A_{LU} , A_{UL} , A_{LL} 10 1 10^{-1} 10^{-2} 10^{-3} 10 X

DVCS HERMES data to CFFs

> ? 1:1 map of charge odd asymmetries (interference term) to CFFs

toy example DVCS off a scalar target

- for the first step we use twist two dominance hypothesis (neglecting twist-three and transversity associated CFFs)
- linearized set of equations (approximately valid)

$$A_{\mathrm{LU},\mathrm{I}}^{\sin(1\phi)} \approx Nc_{\mathfrak{Im}}^{-1} \mathcal{H}^{\mathfrak{Im}} \quad \text{and} \quad A_{\mathrm{C}}^{\cos(1\phi)} \approx Nc_{\mathfrak{Re}}^{-1} \mathcal{H}^{\mathfrak{Re}}$$

• normalization *N* is bilinear in CFFs

$$0 \lesssim N(\boldsymbol{A}) \approx \frac{1}{1 + \frac{k}{4}|\mathcal{H}|^2} \approx \frac{\int_{-\pi}^{\pi} d\phi \,\mathcal{P}_1(\phi) \mathcal{P}_2(\phi) d\sigma_{\rm BH}(\phi)}{\int_{-\pi}^{\pi} d\phi \,\mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \left[d\sigma_{\rm BH}(\phi) + d\sigma_{\rm DVCS}(\phi)\right]} \lesssim 1$$

• cubic equation for N with two non-trivial solutions

$$N(\boldsymbol{A}) \approx \frac{1}{2} \left(1 \pm \sqrt{1 - k c_{\Im \mathfrak{m}}^2 \left(A_{\mathrm{LU},\mathrm{I}}^{\sin(1\phi)} \right)^2 - k c_{\Re \mathfrak{e}}^2 \left(A_{\mathrm{C}}^{\cos(1\phi)} \right)^2} \right) + \frac{\mathrm{BH \, regime}}{\mathrm{-DVCS \, regime}}$$

standard error propagation
 (NOTE: that the philosophy of CFF extraction has been questioned)

mathematical generalization to nucleon case is straightforward

- > HERMES provided an *almost* complete measurement
- having a look to the twist-two sector

$$\mathcal{F}^{\Im\mathfrak{m}} = \mathfrak{I}\mathfrak{m}\begin{pmatrix} \mathcal{H} \\ \widetilde{\mathcal{H}} \\ \mathcal{E} \\ \widehat{\mathcal{E}} \end{pmatrix} \text{ and } \mathcal{F}^{\mathfrak{Re}} = \mathfrak{Re}\begin{pmatrix} \mathcal{H} \\ \widetilde{\mathcal{H}} \\ \mathcal{E} \\ \widehat{\mathcal{E}} \end{pmatrix}, \text{ where } \widehat{\mathcal{E}} = \frac{x_{\mathrm{B}}}{2 - x_{\mathrm{B}}} \widetilde{\mathcal{E}}$$

• rotate data $A_{\mathrm{UL},+}^{\mathrm{sin}(1\phi)} \to \approx A_{\mathrm{UL},\mathrm{I}}^{\mathrm{sin}(1\phi)}, A_{\mathrm{LL},+}^{\mathrm{cos}(1\phi)} \to \approx A_{\mathrm{LL},\mathrm{I}}^{\mathrm{cos}(0\phi)} \to \approx A_{\mathrm{LL},\mathrm{I}}^{\mathrm{cos}(0\phi)} + A_{\mathrm{LL},\mathrm{DVCS}}^{\mathrm{cos}(0\phi)}$
• $\mathbf{A}^{\mathrm{sin}} = \begin{pmatrix} A_{\mathrm{LU},\mathrm{I}}^{\mathrm{sin}(1\phi)} \\ A_{\mathrm{UL},\mathrm{I}}^{\mathrm{sin}(\phi)} \\ A_{\mathrm{UL},\mathrm{I}}^{\mathrm{sin}(\phi)} \\ A_{\mathrm{UT},\mathrm{I}}^{\mathrm{cos}(\phi)} \\ A_{\mathrm{UT},\mathrm{I}}^{\mathrm{cos}(\phi)} + A_{\mathrm{LL},\mathrm{I}}^{\mathrm{cos}(0\phi)} \\ A_{\mathrm{LL},\mathrm{I}}^{\mathrm{cos}(0\phi)} + A_{\mathrm{LL},\mathrm{DVCS}}^{\mathrm{cos}(0\phi)} \end{pmatrix}$ and $\mathbf{A}^{\mathrm{cos}} = \begin{pmatrix} A_{\mathrm{C}}^{\mathrm{cos}(1\phi)} \\ A_{\mathrm{UT},\mathrm{DVCS}}^{\mathrm{cos}(0\phi)} \\ A_{\mathrm{UT},\mathrm{DVCS}}^{\mathrm{cos}(0\phi)} + A_{\mathrm{LL},\mathrm{DVCS}}^{\mathrm{cos}(0\phi)} \end{pmatrix}$ constraints 2 x quadratic constraints

non-linear solution may be written as

$$egin{aligned} & \left(\mathfrak{Im}\,\mathcal{F} \ \mathfrak{Re}\,\mathcal{F}
ight) = rac{1}{N(oldsymbol{A})} \left(egin{aligned} & \mathbf{c}_{\mathfrak{Im}} & \mathbf{0}_{4 imes 4} \\ & \mathbf{0}_{4 imes 4} & \mathbf{c}_{\mathfrak{Re}}(oldsymbol{A}|N(oldsymbol{A})) \end{array}
ight) \cdot \left(egin{aligned} & oldsymbol{A}^{\mathrm{sin}} \\ & oldsymbol{A}^{\mathrm{cos}} \end{array}
ight) \\ & \mathrm{cov}(oldsymbol{\mathcal{F}}) = \left[rac{\partial oldsymbol{\mathcal{F}}}{\partial oldsymbol{A}}\right] \cdot \mathrm{cov}\,(oldsymbol{A}) \cdot \left[rac{\partial oldsymbol{\mathcal{F}}}{\partial oldsymbol{A}}
ight]^{\mathsf{T}} \end{aligned}$$

imaginary parts needed to evaluate real parts

DVCS to CFF map for

 $\int_{-\pi}^{\pi} d\phi \, \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) d\sigma_{\mathrm{BH}}(\phi)$

 $\int_{-\pi}^{\pi} d\phi \, \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \left[d\sigma_{\rm BH}(\phi) + d\sigma_{\rm DVCS}(\phi) \right]$

 ≈ 0.84

NOTE: three combinations of CFFs are (very) well constrained

Projections for a HERMES like experiment with higher statistics and dedicated detector

- **Moutarde** H dominance hypothesis within a smeared polynomial expansion propagated errors + "theoretical" error estimate
- **KMS** neural network within H dominance hypothesis
- **KM10 (KM10a) [KM10b]** curves with (without) [ratios of] HALL A data
- **GK07** model based on RDDA pinned down by DVMP data via handbag approach
- reasonable agreement for HERMES and CLAS kinematics
- large x_B -region and real part remains unsettled

Global fits with hybrid models KM10...

- 150-200 unpolarized proton data from CLAS, HALL A, HERMES, H1 & ZEUS (projected on twist-two dominated observables)
- fitted with hybrid models (`dispersion relation' + flexible sea quark/gluon models) (good fits with χ^2 /d.o.f. \approx 1)

- also good description of small x_B data from H1 and ZEUS
- KM10... cross sections are published as code <u>http://calculon.phy.hr/gpd/</u>
- GK07 model from DVMP hand-bag description overshoots A_{LU} [Goloskokov, (typical for RDDA prediction like VGG of BMK01 models)
 Kroll (07)]²⁸

Summary and outlook

- we derived in terms of helicity dependent CFFs
- ✓ complete cross section expressions for photon leptoproduction of polarized proton in leading order of α_{em}
- ✓ low energy limit relations to generalized polarizabilities
- ✓ Born term was calculated, too
- □ a proposal for a Compton tensor parameterization
- formulae set can be employed in various manner
- to understand how Rosenbluth separation works [maybe useful for JLAB (and perhaps far future EIC) measurements]
- unifying dispersion relation approaches sum rules for GPDs in terms of generalized polarizabilities
- will be used in DVCS and maybe VCS phenomenology
- a common VCS and DVCS phenomenological description is needed for numerical evaluation of radiative electromagnetic corrections
- numerical cross checks of KM GPD fitting code to GPD prediction codes