

**Evgeny Epelbaum, RUB** 

Universität Regensburg, 23.1.2012

# Chiral dynamics: From hadrons to nuclei

#### <u>Outline</u>

- Introduction
- Chiral perturbation theory
- Nuclear forces and light nuclei
- Few-N physics with external probes
- Nuclear dynamics on the lattice: the Hoyle state
- Summary & outlook



# **The Standard Model**



## **Open questions within the SM** QCD hadron & nuclear physics Quarks C **Forces** Н photon Higgs boson electron **Higgs mechanism** (not yet verified) Leptons

|                    | QED QCD                                               |                                             |  |
|--------------------|-------------------------------------------------------|---------------------------------------------|--|
| matter particles   | leptons (e, $\mu$ , $\tau$ )                          | quarks (u, d, s, c, b, t)                   |  |
| force couples to   | electromagnetic charge                                | 3 color charges (r,g,b)                     |  |
| exchange particles | photons (uncharged)                                   | gluons<br>(charged)                         |  |
| coupling constant  | increases<br>as energy<br>grows $\frac{1}{137}$ $Q^2$ | decreases<br>as energy<br>grows $\alpha_s$  |  |
| observed particles | leptons, photons                                      | hadrons (bound states of quarks and gluons) |  |
| energy density     | ~ 1/r                                                 | $\sim r$                                    |  |

## Quantum Chromodynamics (QCD)

# Periodensystem der Elemente



# **Effective Field Theories**

## What is effective?

Effective (field) theories = approximate theories to describe phenomena which occur at a chosen length/energy range.

#### **Example: multipole expansion for electric potentials**

Electric potential from a localized charge distribution:

Only moments of  $\rho(\vec{r})$  are needed to determine  $V(\vec{R})$  at large distances ( $a \ll R$ ):

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with the moments ("low-energy constants"):

$$q = \int d^3 r \,\rho(\vec{r}), \qquad P_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad Q_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r^2)$$



## Scales in nuclear physics



# **Chiral perturbation theory**



 $\longrightarrow \mathcal{L}_{QCD}$  is approx. SU(2)<sub>L</sub> x SU(2)<sub>R</sub> invariant

spontaneous breakdown to  $SU(2)_V \subset SU(2)_L \times SU(2)_R \longrightarrow$  Goldston Bosons (pions)

#### Chiral perturbation theory

• Ideal world [ $m_u = m_d = 0$ ], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

• Real world [  $m_u$ ,  $m_d \ll \Lambda_{QCD}$ ], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

expand about the ideal world (ChPT)

## **Chiral perturbation theory**

#### Effective Lagrangian for hadronic DOF ( $\pi$ , N, ...) Chiral symmetry!



• Low-energy observables computable via a perturbative expansion in  $Q = \frac{p \sim M_{\pi}}{\Lambda_{\chi}}$ Weinberg '79 hard scale that enters  $L_i$ 

At any order  $Q^n$ , a finite number of (unknown) LECs contribute

## **Pion scattering lengths in ChPT**



#### Predictive power?

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \mathcal{L}_{\pi}^{(6)} + \dots$$

# of LECs increasing...

#### S-wave $\pi\pi$ scattering length

**LO:**  $a_0^0 = 0.16$  (Weinberg '66)

**NLO:** 
$$a_0^0 = 0.20$$
 (Gasser, Leutwyler '83)

**NNLO:**  $a_0^0 = 0.217$  (Bijnens et al. '95)

**NNLO + disp. relations:** (Colangelo et al.)

 $a_0^0 = 0.217 \pm 0.008 \,(\text{exp}) \pm 0.006 \,(\text{th})$ 



## **Pion-nucleon scattering**

#### Pion-nucleon scattering in heavy-baryon ChPT

Fettes, Meißner '01



#### Some recent developments

- ChEFT with explicit Δ(1232) DOF Hemmert, Meißner, Pascalutsa, EE, Krebs, ...
- Covariant formulations Alarcon, Camalich, Oller, ...

Gasparyan, Lutz

#### $\pi N$ scattering in Unitarized ChPT

Gasparyan, Lutz '11



## Few nucleons

Low-energy NN interaction is strong (shallow bound states) ->> need nonperturbative methods

Simplification: nonrelativistic problem ( $|\vec{p}_i| \sim M_{\pi} \ll m_N$ )  $\longrightarrow$  the QM A-body problem... Weinberg '91,'92

$$\left[\left(\sum_{i=1}^{A} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within in ChPT}}\right] |\Psi\rangle = E |\Psi\rangle$$

#### **Derivation methods:**

- matching to the amplitude Kaiser, van Kolck, Friar, Higa, Robilotta, ...
- decoupling of pions & nucleons via a UT EE, Glöckle, Meissner, Krebs, Bernard

#### **Chiral expansion of the nuclear Hamiltonian:**

$$V_{2N} = V_{2N}^{(0)} + V_{2N}^{(2)} + V_{2N}^{(3)} + V_{2N}^{(4)} + \dots \qquad \longleftarrow \quad \langle V_{2N} \rangle \sim 20 \text{ MeV/pair}$$
  

$$V_{3N} = V_{3N}^{(3)} + V_{3N}^{(4)} + \dots \qquad \longleftarrow \quad \langle V_{3N} \rangle \sim 1 \text{ MeV/triplet}$$
  

$$V_{4N} = V_{4N}^{(4)} + \dots \qquad \longleftarrow \quad \langle V_{4N} \rangle \sim 0.1 \text{ MeV/quartet}$$

(from Pudliner et al., PRL 74 (95) 4396)

## **Nucleon-nucleon potential**

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...

#### State of the art: N<sup>3</sup>LO (Q<sup>4</sup>) in the $\chi$ expansion

Entem-Machleidt, EE-Glöckle-Meissner

- Long-range part:  $1\pi$ ,  $2\pi$  and  $3\pi$  exchange (parameter-free: all LECs from  $\pi$ N scattering)
- Short-range part: 24 short-range operators, LECs fixed from NN data
- Isospin-breaking corrections

#### Further details in recent review articles:

EE, Prog. Part Nucl. Phys. 57 (06) 654 EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773 Entem, Machleidt, Phys. Rept. 503 (11) 1 EE, Meißner, arXiv:1201.2136, submitted to Ann. Rev. Nucl. Part. Sci.

#### Chiral expansion of the long-range two-nucleon potential



## **Nucleon-nucleon scattering**

#### Neutron-proton differential cross section and analyzing power at

**E**<sub>lab</sub> **= 50 MeV** 



accurate description of data up to  $E_{lab} \sim 200 \text{ MeV}$  at N<sup>3</sup>LO is comparable to modern phenomenological potentials

## **Three-nucleon force**



50

100

150

Neutron Energy (MeV)

200

250

300

 <sup>3</sup>H binding energy calculated based on V<sub>NN</sub> is typically underbound by ~ 1 MeV

Three-nucleon continuum...

## **Three-nucleon force**



# Three-nucleon force

θ<sub>c.i</sub>



## **Chiral three-nucleon force**

#### **3NF first appears ar N<sup>2</sup>LO**

The LECs D,E can be fixed e.g. from <sup>3</sup>H BE and nd doublet scattering length EE, Nogga et al.



#### Nd elastic cross sections at low energies



#### Nd elastic scattering at $E_N$ =90 MeV





30

A<sub>y</sub>-puzzle in p-<sup>3</sup>He elastic scattering

90

 $\boldsymbol{\theta}_{\text{[c.m.]}} \text{ [deg]}$ 

60

120 150

0

30

#### Chiral 3NF Viviani, Gi

#### p-<sup>3</sup>He differential cross section



(the LECs D,E are tuned to the <sup>3</sup>H and <sup>4</sup>He binding energies)



## Light nuclei from chiral forces

Nogga et al.







## Nuclear structure with chiral forces



Navratil et al., PRL 99 (2007) 042501

Chiral 3NF at N<sup>2</sup>LO are also found to play important role in

- explaining the long lifetime of <sup>14</sup>C Holt, Kaiser, Weise '10
- constraining the properties of neutron-rich matter & neutron star radii Hebeler et al.'10
- explaining the structure of Ca isotopes Holt, Otsuka, Schwenk, Suzuki '10

## Chiral 3NF beyond N<sup>2</sup>LO

The first corrections to the leading 3NF are available! Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); PRC84 (11)



highly nontrivial benchmarks with lattice QCD...

# Few-nucleon physics with external probes

## **Pion-deuteron scattering**

Pion-nucleon amplitude at threshold (in the isospin limit):  $T^{ba}_{\pi N} \propto \left[ \delta^{ab} a^+ + i \epsilon^{bac} \tau^c a^- \right]$ 

Recent data on hadronic atoms:

 $\pi H$ :  $\epsilon_{1s} = (-7.120 \pm 0.012) \text{ eV}, \quad \Gamma_{1s} = (0.823 \pm 0.019) \text{ eV}$  Gotta et al., Lect. Notes. Phys. 745 (08) 165  $\pi D$ :  $\epsilon_{1s}^D = (2.356 \pm 0.031) \text{ eV}$  Strauch et al., Eur. Phys. J A47 (11) 88

Use chiral EFT to extract information on  $a^+$  and  $a^-$  from  $a_{\pi d}$ 

Weinberg; Beane, Bernard, Lee, Meißner, EE, Phillips; Baru, Liebig, Hoferichter, Hanhart, Nogga, ...



careful analysis of IB effects
 radiative corrections included



## Isospin breaking & few-N systems

#### Origin of isospin breaking in the Standard Model: $m_u \neq m_d$ , photons

Manifestation in the hadron spectrum: mass splittings

 $M_{\pi^{\pm}} = 139.57 \text{ MeV}, \quad M_{\pi^{0}} = 134.98 \text{ MeV} \quad \leftarrow \text{ mainly of electromagnetic origin}$   $m_{p} = 938.27 \text{ MeV}, \quad m_{n} = 939.57 \text{ MeV} \quad \leftarrow \text{ both strong and electromagnetic}$   $\delta m_{N}^{\text{str}} \equiv (m_{n} - m_{p})^{\text{str}} = 2.05 \pm 0.3 \text{ MeV}$  Gasser, Leutwyler '82 (Cottingham sum rule)  $\delta m_{N}^{\text{em}} \equiv (m_{n} - m_{p})^{\text{em}} = -0.76 \pm 0.3 \text{ MeV}$ 



Some manifestations

- differences in NN phase shifts,
- BE differences in mirror nuclei (CSB)



## Isospin breaking & few-N systems

# <u>The challenge:</u> can we extract the strong nucleon mass shift from hadronic reactions?

•  $dd \rightarrow \alpha \pi^0$  cross section measurement at IUCF @ 228.5 / 231.8 MeV Stephenson et al. '03

 $\sigma = 12.7 \pm 2.2 / 15.1 \pm 3.1 \text{ pb}$ 

Theoretical analysis challenging; first estimations yield the right order of magnitude.

Gardestig et al. '04; Nogga et al.'06

• forward-backward asymetry in  $np \rightarrow d\pi^0$  @ 279.5 MeV (TRIUMF) Opper et al. '03

$$A_{\rm fb} = \frac{\int [d\sigma/d\Omega(\theta) - d\sigma/d\Omega(\pi - \theta)] d[\cos\theta]}{\int [d\sigma/d\Omega(\theta) + d\sigma/d\Omega(\pi - \theta)] d[\cos\theta]} = \left[17.2 \pm 8(\text{stat}) \pm 5.5(\text{sys})\right] \times 10^{-4}$$

## $np \rightarrow d\pi^0$ & the np mass difference

Bolton, Miller '09; Filin, Baru, E.E., Haidenbauer, Hanhart, Kudryavtsev, Meißner '09

$$\frac{d\sigma}{d\Omega} = A_0 + \underbrace{A_1 P_1(\cos \theta_{\pi})}_{\text{gives rise to } A_{\text{fb}}} + A_2 P_2(\cos \theta_{\pi}) + \dots \implies A_{fb} \simeq \frac{A_1}{2A_0}$$

• A<sub>0</sub> can be determined from the pionic deuterium lifetime measurement @ PSI:  $\sigma(np \to d\pi^0) = \frac{1}{2}\sigma(nn \to d\pi^-) = \frac{1}{2} \times 252^{+5}_{-11} \eta \ [\mu b] \longrightarrow A_0 = 10.0^{+0.2}_{-0.4} \eta \ [\mu b]$ 

• A<sub>1</sub> at LO in chiral EFT  $\longrightarrow$   $A_{
m fb}^{
m LO}=(11.5\pm3.5) imes10^{-4}~\delta m_N^{
m str}/{
m MeV}$  Baru et al.'09



Experiment: 
$$A_{\rm fb} = \left[17.2 \pm 8(\text{stat}) \pm 5.5(\text{sys})\right] \times 10^{-4}$$

 $\delta m_N^{
m str} = 1.5 \pm 0.8 \,({
m exp.}) \pm 0.5 \,({
m th.}) \,\,{
m MeV}$ 

Lattice:  $\delta m_N^{
m str} = 2.26 \pm 0.57 \pm 0.42 \pm 0.10~{
m MeV}$  Beane et al.'07

Cottingham SR:  $\delta m_N^{
m str} = 2.05 \pm 0.3 ~
m MeV$  Gasser, Leutwyler '82

## **Photon-induced reactions**



• Threshold kinematics Park, Min, Rho '95; Park, Kubodera, Min, Rho; Song, Lazauskas, Park, Min, ... Application to  $np \rightarrow d\gamma$  at threshold:  $\sigma_{1N} = 306.6 \text{ mb} \longrightarrow \sigma_{1N+2N} = 334 \pm 3 \text{ mb}$ to be compared with  $\sigma_{exp} = 334.2 \pm 0.5 \text{ mb}$ 

General kinematics Pastore, Schiavilla, Girlanda, Viviani, '08-'11; Kölling, Krebs, EE, Meißner, '09-'11

Application: Radiative capture of light nuclei

- LECs fixed assuming  $\Delta$ -dominance and magnetic moments of <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He +  $\sigma_{np}^{\gamma}$
- predictions for nd, n<sup>3</sup>He radiative capture reactions for thermal neutrons (MEC dominated)



## **3N force & axial currents**

Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502



|        | <sup>3</sup> H | <sup>3</sup> H                |            | $^{3}\mathrm{He}$             |            | $^{4}\mathrm{He}$             |  |
|--------|----------------|-------------------------------|------------|-------------------------------|------------|-------------------------------|--|
|        | $E_{g.s.}$     | $\langle r_p^2 \rangle^{1/2}$ | $E_{g.s.}$ | $\langle r_p^2 \rangle^{1/2}$ | $E_{g.s.}$ | $\langle r_p^2 \rangle^{1/2}$ |  |
| NN     | -7.852(4)      | 1.651(5)                      | -7.124(4)  | 1.847(5)                      | -25.39(1)  | 1.515(2)                      |  |
| NN+NNN | -8.473(4)      | 1.605(5)                      | -7.727(4)  | 1.786(5)                      | -28.50(2)  | 1.461(2)                      |  |
| Expt.  | -8.482         | 1.60                          | -7.718     | 1.77                          | -28.296    | 1.467(13)                     |  |

## **3N force & axial currents**

The determined value of *D* can be used to compute the muon doublet capture rate in

 $\mu^- + d \rightarrow n + n + \nu_\mu$ 

 $\Lambda_{1/2} = (405.5 \pm 4.3) \ s^{-1} \text{ Adam, Tater, Truhlik, EE, Machleidt, Ricci '11 }$ (a somewhat different value reported by Marcucci et al.'11)

Exp:  $\Lambda_{1/2} = (470.0 \pm 29)s^{-1}$  Martino '86  $\Lambda_{1/2} = (409.0 \pm 40)s^{-1}$  Cargnelli et al., '86, '87

Ongoing measurement by the MuSun Collaboration @ PSI: 1.5% accuracy for  $\Lambda_{1/2}$ 



Test chiral EFT

Precision calculation of weak nuclear reactions

$$p + p \rightarrow d + e^{+} + \nu_{e},$$

$$p + p + e^{-} \rightarrow d + \nu_{e},$$

$$p + {}^{3}He \rightarrow {}^{4}He + e^{+} + \nu_{e}$$

$${}^{7}Be + e^{-} \rightarrow {}^{7}Li + \nu_{e},$$

$${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + \nu_{e}$$

# **Nuclear Lattice Simulations**

In collaboration with:

Dean Lee (North Carolina), Hermann Krebs (Bochum), Ulf-G. Meißner (Bonn/Jülich)

 Borasoy, E.E., Krebs, Lee, Meißner, Eur. Phys. J. A31 (07) 105,

 Eur. Phys. J. A34 (07) 185,

 Eur. Phys. J. A35 (08) 343,

 Eur. Phys. J. A35 (08) 357,

 E.E., Krebs, Lee, Meißner, Eur. Phys. J A40 (09) 199,

 Eur. Phys. J A41 (09) 125,

 Phys. Rev. Lett 104 (10) 142501,

 Eur. Phys. J. 45 (10) 335,

 Phys. Rev. Lett. 106 (11) 192501



# **Calculation strategy**

#### Lattice action (improved to minimize discr. errors, accurate to Q<sup>3</sup>)



Solve 2N Schröd. Eq. with the spherical wall boundary cond.  $\implies$  phase shifts  $\implies$  fix the LO and NLO (per-turbatively) contact terms



projection Monte Carlo (with auxiliary fields)

**Determine the LECs D, E** from <sup>3</sup>H and <sup>4</sup>He BEs  $\implies$  the nuclear Hamiltonian completely fixed up to NNLO (Q<sup>3</sup>)





(Multi-channel) projection Monte Carlo with auxiliary fields

Simulate the ground (and excited) states of light nuclei



## Lattice actions



## Ground states of <sup>8</sup>Be and <sup>12</sup>C

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501

#### Simulations for <sup>8</sup>Be and <sup>12</sup>C, L=11.8 fm



#### Various contributions to <sup>4</sup>He, <sup>8</sup>Be and <sup>12</sup>C

|                    | <sup>4</sup> He | <sup>8</sup> Be | <sup>12</sup> C |
|--------------------|-----------------|-----------------|-----------------|
| LO $[O(Q^0)]$      | -24.8(2)        | -60.9(7)        | -110(2)         |
| NLO $[O(Q^2)]$     | -24.7(2)        | -60(2)          | -93(3)          |
| $IB + EM [O(Q^2)]$ | -23.8(2)        | -55(2)          | -85(3)          |
| NNLO [ $O(Q^3)$ ]  | -28.4(3)        | -58(2)          | -91(3)          |
| Experiment         | -28.30          | -56.50          | -92.16          |

# The Hoyle state

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501



|                    | $0_{2}^{+}$ | $2_1^+, J_z^- = 0$ | $2_1^+, J_z = 2$ |
|--------------------|-------------|--------------------|------------------|
| LO $[O(Q^0)]$      | -94(2)      | -92(2)             | -89(2)           |
| NLO $[O(Q^2)]$     | -82(3)      | -87(3)             | -85(3)           |
| $IB + EM [O(Q^2)]$ | -74(3)      | -80(3)             | -78(3)           |
| NNLO $[O(Q^3)]$    | -85(3)      | -88(3)             | -90(4)           |
| Experiment         | -84.51      | -8                 | 7.72             |

# Summary & outlook

#### Nuclear chiral EFT enters precision era:

accurate nuclear potentials at N<sup>3</sup>LO detailed analyses of electroweak currents high-precision determination of  $\pi$ N scatt. lengths precision calculations of the radiative/muon capture reactions, ...

#### Time to address unsolved problems:

e.g. the structure of the 3NF (work in progress...)

#### **New trends/directions:**

combining EFT with ab-initio many-body methods  $\longrightarrow$  access to light nuclei bridging strong, weak and e.m. few-N reactions, ...

#### Further topics (not covered in the talk):

nuclear parity violation

hypernuclear physics

few-N systems and physics beyond the Standard Models (e.g. neutron EDM), ...