Evgeny Epelbaum, RUB

Electroweak properties of light nuclei, INT Seattle, 5-9.11.12

Electromagnetic currents in chiral effective field theory

<u>Outline</u>

- Introduction
- Exchange currents at leading-loop order
- Exchange currents and the deuteron form factors
- Exchange currents and deuteron photodisintegration
- Pion photoproduction off light nuclei
- Summary & outlook

Introduction

The roadmap: QCD \rightarrow Chiral Perturbation Theory \rightarrow hadron dynamics

NN interaction is strong, resummations/nonperturbative methods needed...

Simplification: nonrelativistic problem ($|\vec{p_i}| \sim M_{\pi} \ll m_N$) \longrightarrow the QM A-body problem Weinberg '91

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}_{\text{derivable in ChPT}}\right]|\Psi\rangle=E|\Psi\rangle$$

- unified description of $\pi\pi$, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Electromagnetic currents

(one-photon exchange approximation)

for Compton scattering see talks by Harald Grießhammer and Winfried Leidemann

Electromagnetic exchange currents

• More recent calculations, general kinematics $\omega \sim M_{\pi}^2/m$, $|\vec{q}| \sim M_{\pi}$ TOPT: Pastore, Schiavilla, Girlanda, Viviani; UT: Kölling, Krebs, EE, Meißner

Notice: 3N diagrams do not yield currents at this order...

From *L*_{eff} to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

Canonical transformation & quantization: $\mathcal{L}_{\pi N} \longrightarrow \mathcal{H}_{\pi N} = -$

From *L*_{eff} to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

Canonical transformation & quantization: $\mathcal{L}_{\pi N} \longrightarrow \mathcal{H}_{\pi N} = -$

Nuclear forces via UT (Fock space): $H \to \tilde{H} = U^{\dagger} \begin{pmatrix} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{pmatrix} U = \begin{pmatrix} \tilde{H}_{nucl} & 0 \\ 0 & \tilde{H}_{rest} \end{pmatrix}$

- "Minimal" UT computed perturbatively $H = \sum_{\kappa=1}^{\infty} (1/\Lambda)^{\kappa} H^{(\kappa)}$
- Only \tilde{H}_{nucl} is needed below the pion production threshold
- We employ all additional UTs possible at a given order in the expansion
- Renormalizability → unambigous results for 4NF & (static) 3NF upto N³LO EE '06,'07; Bernard, EE, Krebs, Meißner '08

From *L*eff to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

Solution (E.E.'06)

Nuclear potentials are not uniquely defined. Employing additional UTs in Fock space, it was (so far) always possible to maintain renormalizability at the level of the nuclear Hamiltonian. Same problem emerges for the current operators...

From *L*_{eff} to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

Canonical transformation & quantization: $\mathcal{L}_{\pi N} \longrightarrow \mathcal{H}_{\pi N} = -$

Nuclear forces via UT (Fock space): $H \to \tilde{H} = U^{\dagger} \begin{pmatrix} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{pmatrix} U = \begin{pmatrix} \tilde{H}_{nucl} & 0 \\ 0 & \tilde{H}_{rest} \end{pmatrix}$

- "Minimal" UT computed perturbatively $H = \sum_{\kappa=1}^{\infty} (1/\Lambda)^{\kappa} H^{(\kappa)}$
- Only \tilde{H}_{nucl} is needed below the pion production threshold
- We employ all additional UTs possible at a given order in the expansion
- Renormalizability → unambigous results for 4NF & (static) 3NF upto N³LO EE '06,'07; Bernard, EE, Krebs, Meißner '08

From *L*_{eff} to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

Canonical transformation & quantization: $\mathcal{L}_{\pi N} \longrightarrow \mathcal{H}_{\pi N} = -$

• Nuclear forces via UT (Fock space): $H \to \tilde{H} = U^{\dagger} \begin{pmatrix} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{pmatrix} U = \begin{pmatrix} \tilde{H}_{\text{nucl}} & 0 \\ 0 & \tilde{H}_{\text{rest}} \end{pmatrix}$

- "Minimal" UT computed perturbatively $H = \sum_{\kappa=1}^{\infty} (1/\Lambda)^{\kappa} H^{(\kappa)}$
- Only \dot{H}_{nucl} is needed below the pion production threshold
- We employ all additional UTs possible at a given order in the expansion
- Renormalizability → unambigous results for 4NF & (static) 3NF upto N³LO EE '06,'07; Bernard, EE, Krebs, Meißner '08

Effective current operator

• "Bare" current
$$J^{\mu}(x) = \partial_{\nu} \frac{\partial \mathcal{L}_{\pi N \gamma}}{\partial (\partial_{\nu} \mathcal{A}_{\mu})} - \frac{\partial \mathcal{L}_{\pi N \gamma}}{\partial \mathcal{A}_{\mu}}$$

• Effective hadronic current $J_{\mu} \to \tilde{J}_{\mu} = U^{\dagger} \begin{pmatrix} & & \\ & & \end{pmatrix} U = \begin{pmatrix} \tilde{J}_{\mu}^{\text{nucl}} \\ & & \end{pmatrix}$
• Need additional, \mathcal{A}_{μ} -dependent UTs $\eta U' \eta \Big|_{\mathcal{A}_{\mu}=0} = 1_{\eta}$ to enforce renormalizability

One-pion exchange current Kölling, I

Kölling, EE, Krebs, Meißner '11

Tree-level diagrams with 1 insertion from $\mathcal{L}_{\pi N}^{(3)}$

All UV divergences must be absorbed in *d*/s and renormalization of the LO current (*F_z*, *M_z*)

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{split} f_1\left(k\right) &= 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_8\,, \quad f_2\left(k\right) = 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_9\,, \quad f_3\left(k\right) = -ie\frac{g_A}{64F_\pi^4\pi^2}\left[\,g_A^3\left(2L(k)-1\right)+32F_\pi^2\pi^2\bar{d}_{21}\right]\,, \\ f_4\left(k\right) &= -ie\frac{g_A}{4F_\pi^2}\,\bar{d}_{22}\,, \quad f_5\left(k\right) = -ie\frac{g_A^2}{384F_\pi^4\pi^2}\left[2(4M_\pi^2+k^2)L(k)+\left(6\,\bar{l}_6-\frac{5}{3}\right)k^2-8M_\pi^2\right]\,, \\ f_6\left(k\right) &= -ie\frac{g_A}{F_\pi^2}M_\pi^2\,\bar{d}_{18}\,, \end{split}$$

Charge density

$$\rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \tau_2^3 \Big[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \Big] + 1/m_N \text{-corrections (tree level)}$$

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$f_{1}(k) = 2ie\frac{g_{A}}{F_{\pi}}d_{8} \quad f_{2}(k) = 2ie\frac{g_{A}}{F_{\pi}^{2}}d_{9} \quad f_{3}(k) = -ie\frac{g_{A}}{64F_{\pi}^{4}\pi^{2}} \left[g_{A}^{3}\left(2L(k)-1\right)+32F_{\pi}^{2}\pi\dot{d}_{21}\right],$$

$$f_{4}(k) = -ie\frac{g_{A}}{4F_{\pi}^{2}}d_{22} \quad f_{5}(k) = -ie\frac{g_{A}^{2}}{384F_{\pi}^{4}\pi^{2}} \left[2(4M_{\pi}^{2}+k^{2})L(k)+\left(\bar{l}_{6}+\frac{5}{3}\right)k^{2}-8M_{\pi}^{2}\right],$$

$$how-energy\ constants;\ \bar{l}_{c}\quad \bar{d}_{18}\ (fairly)\ well\ known;\ \bar{d}_{8}\quad \bar{d}_{9}\quad \bar{d}_{91}\quad \bar{d}_{91}$$

 $f_6(k) = -ie \frac{g_A}{F_{\pi}^2} M_{\pi}^2 d_{18}$ Low-energy constants: \bar{l}_6 , \bar{d}_{18} (fairly) well known; \bar{d}_8 , \bar{d}_9 , \bar{d}_{21} , \bar{d}_{22} - less well known (can, in principle, be fit to π -photoproduction data...)

Charge density

$$\mathbf{ty} \quad \rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \tau_2^3 \Big[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \Big] + 1/m_N \text{-corrections (tree level)}$$

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$f_1(k) = 2ie\frac{g_A}{F_{\pi}^2} d_8 \qquad f_2(k) = 2ie\frac{g_A}{F_{\pi}^2} d_9 \qquad f_3(k) = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d_{21} = -ie\frac{g_A}{64F_{\pi}^4\pi^2} \left[g_A^3 \left(2L(k) - 1\right) + 32F_{\pi}^2\pi d_{21} \right] d$$

$$f_4(k) = -ie\frac{g_A}{4F_\pi^2} d_{22} \qquad f_5(k) = -ie\frac{g_A^2}{384F_\pi^4\pi^2} \left[2(4M_\pi^2 + k^2)L(k) + \left(\sqrt{\hat{l}_6} + \frac{5}{3} \right)k^2 - 8M_\pi^2 \right],$$

Low-energy constants: \bar{l}_6 , \bar{d}_{18} (fairly) well known; \bar{d}_8 , \bar{d}_9 , \bar{d}_{21} , \bar{d}_{22} - less well known (can, in principle, be fit to π -photoproduction data...)

Low-energy constants:

 $f_6(k) = -ie \frac{g_A}{F^2} M_\pi^2 d_{18}$

 $\bar{l}_6 = 16.5(1.1)$ (pion charge radius) Gasser, Leutryler '84 $\bar{d}_{18} = 0.4 \text{ GeV}^{-2}$ (Goldberger-Treiman discrepancy) The LECs \bar{d}_8 , \bar{d}_9 , and $2\bar{d}_{21} - \bar{d}_{22}$ can be determined from pion photoproduction Fearing, Hemmert, Lewis, Unkmeir '00, Gasparyan, Lutz '10

$\bar{d}_8 \ { m GeV^2}$	$\bar{d}_9 \ { m GeV}^2$	$\bar{d}_{20} \ \mathrm{GeV}^2$	$(2\bar{d}_{21}-\bar{d}_{22})~{ m GeV}^2$
3.35	-0.06	0.61	0.05

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$f_{1}(k) = 2ie\frac{g_{A}}{F_{\pi}}d_{8} \quad f_{2}(k) = 2ie\frac{g_{A}}{F_{\pi}^{2}}d_{9} \quad f_{3}(k) = -ie\frac{g_{A}}{64F_{\pi}^{4}\pi^{2}} \left[g_{A}^{3}\left(2L(k)-1\right)+32F_{\pi}^{2}\pi\dot{d}_{21}\right],$$

$$f_{4}(k) = -ie\frac{g_{A}}{4F_{\pi}^{2}}d_{22} \quad f_{5}(k) = -ie\frac{g_{A}^{2}}{384F_{\pi}^{4}\pi^{2}} \left[2(4M_{\pi}^{2}+k^{2})L(k)+\left(\bar{l}_{6}+\frac{5}{3}\right)k^{2}-8M_{\pi}^{2}\right],$$

$$how-energy\ constants;\ \bar{l}_{c}\quad \bar{d}_{18}\ (fairly)\ well\ known;\ \bar{d}_{8}\quad \bar{d}_{9}\quad \bar{d}_{91}\quad \bar{d}_{91}$$

 $f_6(k) = -ie \frac{g_A}{F_{\pi}^2} M_{\pi}^2 d_{18}$ Low-energy constants: \bar{l}_6 , \bar{d}_{18} (fairly) well known; \bar{d}_8 , \bar{d}_9 , \bar{d}_{21} , \bar{d}_{22} - less well known (can, in principle, be fit to π -photoproduction data...)

Charge density

$$\mathbf{ty} \quad \rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \tau_2^3 \Big[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \Big] + 1/m_N \text{-corrections (tree level)}$$

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{split} f_1\left(k\right) &= 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_8\,, \quad f_2\left(k\right) = 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_9\,, \quad f_3\left(k\right) = -ie\frac{g_A}{64F_\pi^4\pi^2}\left[\,g_A^3\left(2L(k)-1\right)+32F_\pi^2\pi^2\bar{d}_{21}\right]\,, \\ f_4\left(k\right) &= -ie\frac{g_A}{4F_\pi^2}\,\bar{d}_{22}\,, \quad f_5\left(k\right) = -ie\frac{g_A^2}{384F_\pi^4\pi^2}\left[2(4M_\pi^2+k^2)L(k)+\left(6\,\bar{l}_6-\frac{5}{3}\right)k^2-8M_\pi^2\right]\,, \\ f_6\left(k\right) &= -ie\frac{g_A}{F_\pi^2}M_\pi^2\,\bar{d}_{18}\,, \end{split}$$

Charge density

$$\rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \tau_2^3 \Big[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \Big] + 1/m_N \text{-corrections (tree level)}$$

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} [\vec{q}_1 \times \vec{q}_2] \left[\tau_2^3 \, f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 \, f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{aligned} f_1(k) &= 2ie\frac{g_A}{F_\pi^2}\bar{d}_8, \quad f_2(k) = 2ie\frac{g_A}{F_\pi^2}\bar{d}_9, \quad f_3(k) = -ie\frac{g_A}{64F_\pi^4\pi^2} \left[g_A^3 \left(2L(k) - 1 \right) + 32F_\pi^2\pi^2\bar{d}_{21} \right], \\ f_4(k) &= -ie\frac{g_A}{4F_\pi^2}\bar{d}_{22}, \quad f_5(k) = -ie\frac{g_A^2}{384F_\pi^4\pi^2} \left[2(4M_\pi^2 + k^2)L(k) + \left(6\bar{l}_6 - \frac{5}{3} \right)k^2 - 8M_\pi^2 \right], \\ f_6(k) &= -ie\frac{g_A}{F_\pi^2}M_\pi^2\bar{d}_{18}, \\ f_6(k) &= -ie\frac{g_A}{F_\pi^2}M_\pi^2\bar{d}_{18}, \end{aligned}$$
Comparison with Pastore et al., PRC 80 (09) 034004: agree,

Charge density $\rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_{\pi}^2} \tau_2^3 \Big[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \Big] + 1/m_N$ -corrections (tree level)

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} [\vec{q}_1 \times \vec{q}_2] \left[\tau_2^3 \, f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 \, f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{aligned} f_{1}\left(k\right) &= 2ie\frac{g_{A}}{F_{\pi}^{2}}\bar{d}_{8} \quad f_{2}\left(k\right) = 2ie\frac{g_{A}}{F_{\pi}^{2}}\bar{d}_{9}, \quad f_{3}\left(k\right) = -ie\frac{g_{A}}{64F_{\pi}^{4}\pi^{2}}\left[g_{A}^{3}\left(2L(k)-1\right) + 32F_{\pi}^{2}\pi^{2}\bar{d}_{21}\right], \\ f_{4}\left(k\right) &= -ie\frac{g_{A}}{4F_{\pi}^{2}}\bar{d}_{22}, \quad f_{5}\left(k\right) = -ie\frac{g_{A}^{2}}{384F_{\pi}^{4}\pi^{2}}\left[2(4M_{\pi}^{2}+k^{2})L(k) + \left(6\bar{l}_{6}-\frac{5}{3}\right)k^{2}-8M_{\pi}^{2}\right], \\ f_{6}\left(k\right) &= -ie\frac{g_{A}}{F_{\pi}^{2}}M_{\pi}^{2}\bar{d}_{18}, \\ f_{6}\left(k\right) &= -ie\frac{g_{A}}{F_{\pi}^{2}}M_{\pi}^{2}\bar{d}_{18}, \end{aligned}$$
Comparison with Pastore et al., PRC 80 (09) 034004: agree, "slightly" disagree,"

Charge density $\rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \tau_2^3 \left[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \right] + 1/m_N \text{-corrections (tree level)}$

$$f_7(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right]$$

$$f_8(k) = e \frac{g_A^4}{64F_\pi^4 \pi} \left[(4M_\pi^2 + k^2)A(k) - M_\pi \right]$$

Kölling, EE, Krebs, Meißner '11

Notation:
$$\langle \vec{p_1}' \vec{p_2}' | J^{\mu}_{\text{complete}} | \vec{p_1} \vec{p_2} \rangle = \delta(\vec{p_1}' + \vec{p_2}' - \vec{p_1} - \vec{p_2} - \vec{k}) [J^{\mu} + (1 \leftrightarrow 2)]$$

Current density

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{aligned} f_{1}\left(k\right) &= 2ie\frac{g_{A}}{F_{\pi}^{2}}\bar{d}_{8} \quad f_{2}\left(k\right) = 2ie\frac{g_{A}}{F_{\pi}^{2}}\bar{d}_{9}, \quad f_{3}\left(k\right) = -ie\frac{g_{A}}{64F_{\pi}^{4}\pi^{2}} \left[g_{A}^{3}\left(2L(k)-1\right)-32F_{\pi}^{2}\pi^{2}\bar{d}_{21}\right], \\ f_{4}\left(k\right) &= -ie\frac{g_{A}}{4F_{\pi}^{2}}\bar{d}_{22} \quad f_{5}\left(k\right) = -ie\frac{g_{A}^{2}}{384F_{\pi}^{4}\pi^{2}} \left[2(4M_{\pi}^{2}+k^{2})L(k) + \left(6\bar{l}_{6}-\frac{5}{3}\right)k^{2} + 8M_{\pi}^{2}\right], \\ f_{6}\left(k\right) &= -ie\frac{g_{A}}{F_{\pi}^{2}}M_{\pi}^{2}\bar{d}_{18}, \end{aligned}$$
Comparison with Pastore et al., PRC 80 (09) 034004: agree, "slightly" disagree, completely disagree

Charge density $\rho_{1\pi} = \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_{\pi}^2} \tau_2^3 \left[\vec{\sigma}_1 \cdot \vec{k} \, \vec{q}_2 \cdot \vec{k} f_7(k) + \vec{\sigma}_1 \cdot \vec{q}_2 f_8(k) \right] + 1/m_N$ -corrections (tree level)

$$f_{7}(k) = e \frac{g_{A}^{4}}{64F_{\pi}^{4}\pi} \left[A(k) + \frac{M_{\pi} - 4M_{\pi}^{2}A(k)}{k^{2}} \right]$$

$$f_{8}(k) = e \frac{g_{A}^{4}}{64F_{\pi}^{4}\pi} \left[(4M_{\pi}^{2} + k^{2})A(k) - M_{\pi} \right]$$

absent in Pastore et al., PRC 80 (09) 034004

Two-pion exchange current density

Kölling, EE, Krebs, Meißner '09

Two-pion exchange charge density

Kölling, EE, Krebs, Meißner '09

Short-range currents

Kölling, EE, Krebs, Meißner '11

Current density

 $\vec{J}_{\text{contact}} = e \frac{i}{16} \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \left[(C_2 + 3C_4 + C_7) \ \vec{q}_1 - (-C_2 + C_4 + C_7) \ (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \ \vec{q}_1 + C_7 \ (\vec{\sigma}_2 \cdot \vec{q}_1 \ \vec{\sigma}_1 + \vec{\sigma}_1 \cdot \vec{q}_1 \ \vec{\sigma}_2) \right] \\ - e \frac{C_5 i}{16} \left(\tau_1^3 - \tau_2^3 \right) \left(\vec{\sigma}_1 + \vec{\sigma}_2 \right) \times \vec{q}_1 + ieL_1 \ \tau_1^3 \ (\vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{k} + ieL_2 \ (\vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{q}_1$

Charge density $\rho_{\text{contact}} = C_T \tau_1^3 \left[\vec{\sigma}_1 \cdot \vec{k} \, \vec{\sigma}_2 \cdot \vec{k} \, f_9(k) + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \, f_{10}(k) \right]$ with $f_9(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(A(k) + \frac{M_\pi - 4M_\pi^2 \, A(k)}{k^2} \right), \qquad f_{10}(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(M_\pi - (4M_\pi^2 + 3k^2) \, A(k) \right)$

Short-range currents

Kölling, EE, Krebs, Meißner '11

Current density

 $\vec{J}_{\text{contact}} = e \frac{i}{16} \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \left[(C_2 + 3C_4 + C_7) \ \vec{q}_1 - (-C_2 + C_4 + C_7) \ (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \ \vec{q}_1 + C_7 \ (\vec{\sigma}_2 \cdot \vec{q}_1 \ \vec{\sigma}_1 + \vec{\sigma}_1 \cdot \vec{q}_1 \ \vec{\sigma}_2) \right] \\ - e \frac{C_5 i}{16} \left(\tau_1^3 - \tau_2^3 \right) \left(\vec{\sigma}_1 + \vec{\sigma}_2 \right) \times \vec{q}_1 + i \left(L_1 \right) \frac{1}{1}^3 \left(\vec{\sigma}_1 - \vec{\sigma}_2 \right) \times \vec{k} + i \left(L_2 \right) \vec{\sigma}_1 - \vec{\sigma}_2 \right) \times \vec{q}_1 \\ \text{Two new LECs } L_{1,2} \left(C_i \text{'s are the same as in the potential} \right)$

Charge density $\rho_{\text{contact}} = C_T \tau_1^3 \left[\vec{\sigma}_1 \cdot \vec{k} \, \vec{\sigma}_2 \cdot \vec{k} \, f_9(k) + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \, f_{10}(k) \right]$ with $f_9(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(A(k) + \frac{M_\pi - 4M_\pi^2 \, A(k)}{k^2} \right), \qquad f_{10}(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(M_\pi - (4M_\pi^2 + 3k^2) \, A(k) \right)$

Short-range currents

Kölling, EE, Krebs, Meißner '11

Current density

$$\vec{J}_{\text{contact}} = e \frac{i}{16} [\vec{\tau}_1 \times \vec{\tau}_2]^3 \left[(C_2 + 3C_4 + C_7) \vec{q}_1 - (-C_2 + C_4 + C_7) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \vec{q}_1 + C_7 (\vec{\sigma}_2 \cdot \vec{q}_1 \vec{\sigma}_1 + \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2) \right] \\ - e \frac{C_5 i}{16} (\tau_1^3 - \tau_2^3) (\vec{\sigma}_1 + \vec{\sigma}_2) \times \vec{q}_1 + i (L_1) \tau_1^3 (\vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{k} + i (L_2) \vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{q}_1$$

Two new LECs $L_{12} (C_1^3 = c_1^3) (\vec{\sigma}_1 + \vec{\sigma}_2) \times \vec{q}_1 + i (L_1) \tau_1^3 (\vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{k} + i (L_2) \vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{q}_1$

Pion loop contributions differ from the ones by Pastore et al.

Charge density $\rho_{\text{contact}} = C_T \tau_1^3 \left[\vec{\sigma}_1 \cdot \vec{k} \, \vec{\sigma}_2 \cdot \vec{k} \, f_9(k) + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \, f_{10}(k) \right]$ with $f_9(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(A(k) + \frac{M_\pi - 4M_\pi^2 A(k)}{k^2} \right), \quad f_{10}(k) = e \frac{g_A^2}{32F_\pi^2 \pi} \left(M_\pi - (4M_\pi^2 + 3k^2) A(k) \right)$

Exchange currents and the deuteron form factors

for more applications see talks by Sonia Bacca, Tae-Sun Park and Saori Pastore

Em currents and the deuteron form factors Meißner, Walzl, Phillips, Kölling, EE, ...

FFs of the deuteron:

$$G_M = -\frac{1}{\sqrt{2\eta}|e|} \langle 1|J^+|0\rangle, \qquad G_Q = \frac{1}{2\eta|e|m_d^2} \Big(\langle 0|\rho|0\rangle - \langle 1|\rho|1\rangle \Big), \qquad G_C = \frac{1}{3|e|} \Big(\langle 1|\rho|1\rangle + \langle 0|\rho|0\rangle + \langle -1|\rho|-1\rangle \Big)$$

Using exp. data for 1N FFs as input allows to probe nuclear structure effects Phillips '03

Most of the exchange current/charge operators are isovectors. The only relevant isoscalar pieces are:

$$\begin{split} \vec{J}_{1\pi} &= 2ie\frac{g_A}{F_{\pi}^2}\,\vec{d}_9\,\vec{\tau}_1\cdot\vec{\tau}_2\,\frac{\vec{\sigma}_2\cdot\vec{q}_2\,\vec{q}_1\times\vec{q}_2}{q_2^2 + M_{\pi}^2}\\ \rho_{1\pi} &= \frac{eg_A^2}{16F_{\pi}^2m_N}\,\vec{\tau}_1\cdot\vec{\tau}_2\,\left[(1\!-\!2\bar{\beta}_9)\,\frac{\vec{\sigma}_1\cdot\vec{k}\,\vec{\sigma}_2\cdot\vec{q}_2}{q_2^2 + M_{\pi}^2} + \left(2\bar{\beta}_8 - 1\right)\frac{\vec{\sigma}_1\cdot\vec{q}_2\,\vec{\sigma}_2\cdot\vec{q}_2}{(q_2^2 + M_{\pi}^2)^2}\,\vec{q}_2\cdot\vec{k}_1 \right]\\ \vec{J}_{\text{contact}} &= ieL_2\,\left[(\vec{\sigma}_1 + \vec{\sigma}_2)\times\vec{q}_1 \right] \end{split}$$

- The constants $\overline{\beta}_{8,9}$ parametrize the unitary ambiguity & have to be chosen consistently with the potential Friar '80, Adam, Goller, Arenhövel '93, EE, Glöckle, Meißner '04
- The LECs $ar{d}_9,\ L_2$ contribute to the magnetic FF

Em currents and the deuteron form factors Phillips '07

(from Phillips, J. Phys. G 34 (2007) 365)

G_C: parameter-free prediction; G_C/G_Q: 1 short-range term fitted to the quadrupole moment;
 In both cases 1N FFs used as input...

Em currents and the deuteron form factors Kölling, EE, Phillips '12

1N form factors from Belushkin, Hammer, Meißner '07

• \overline{d}_9 , L_2 fitted to the deuteron magnetic moment and FF for q < 400 MeV:

 $\bar{d}_9 = -0.01 \dots 0.01 \text{ GeV}^{-2}$ $L_2 = 0.28 \dots 0.48 \text{ GeV}^{-4}$ (NNLO WF) Pion photoproduction: $\bar{d}_9 = -0.06 \text{ GeV}^{-2}$ Gasparyan, Lutz '10

2π-exchange current and ²H / ³He photodisintegration

Deuteron photodisintegration

Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Nogga '11

Sensitivity of the total cross section to the 2π -exchange current

short-range & (subleading)1 π -exchange terms still to be included

Deuteron photodisintegration

Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Nogga '11

Cross section and photon analyzing power at E_{γ} =30 MeV

large sensitivity to MEC; short-range & 1π -exchange terms still to be included

³He 2-body photodisintegration

Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Krebs '11

Cross section and photon analyzing power at E_{γ} =20 MeV

large sensitivity to MEC; short-range & 1π -exchange terms still to be included

Coherent pion photoproduction off ³He

Lenkewitz, EE, Hammer, Meißner '11,'12

Neutral pion photoproduction off ³He

Motivation

- Testing chiral EFT (2NF + 3NF + currents)
- Use reactions $\pi^- d \rightarrow nn\gamma$ and $d\gamma \rightarrow nn\pi^+$ to extract nn scattering length Gardestig, Phillips '06; Lensky, Baru, EE, Hanhart, Haidenbauer, Kudryavtsev, Meißner '07
- Pion production off light nuclei and the neutron amplitude.

Pion electroproduction amplitude off a spin-1/2 particle at threshold:

 $\mathcal{M}_{\lambda} = 2i \, E_{0+} \left(\vec{\epsilon}_{\lambda,T} \cdot \vec{S} \right) + 2i \, L_{0+} \left(\vec{\epsilon}_{\lambda,L} \cdot \vec{S} \right)$

ChPT predictions at q⁴ (in units of $10^{-3} M_{\pi^+}^{-1}$): $E_{0+}^{\pi^0 p} = -1.16$, $E_{0+}^{\pi^0 n} = +2.13$ Bernard, Kaiser, Meißner '96,'01 $L_{0+}^{\pi^0 p} = -1.35$, $L_{0+}^{\pi^0 n} = -2.41$

Pion photo- and electroproduction off ²H explored theoretically and experimentally Theory: Beane, Bernard, Lee, Meißner, van Kolck '97, Krebs, Bernard, Meißner '04; Experiment: Saclay, Saskatoon

³He as an effective neutron target: order-q⁴ calculation Lenkewitz, EE, Hammer, Meißner '11, '12

- No 3N currents at order q⁴
- 2N currents purely long-range and parameter free

Use Monte-Carlo integration to compute convolution integrals with the chiral ³He WF

Neutral pion photoproduction off ³He

Individual contributions to the three-nucleon multipoles

³ He	1N (q ⁴)	$2N(q^3)$	1N-boost	2N-static (q^4)	2N-recoil (q^4)	total
$E_{0+} \left[10^{-3}/M_{\pi^+} ight]$	+1.71(4)(9)	-3.95(3)	-0.23(1)	-0.02(0)(1)	+0.01(2)(1)	-2.48(11)
$L_{0+} [10^{-3}/M_{\pi^+}]$	-1.89(4)(9)	-3.09(2)	-0.00(0)	-0.07(1)(1)	+0.07(7)(0)	-4.98(12)
³ H	1N (q ⁴)	$2N\left(q^3 ight)$	1N-boost	2N-static (q^4)	2N-recoil (q^4)	total
$E_{0+} \left[10^{-3}/M_{\pi^+} ight]$	-0.93(3)(5)	-4.01(3)	-0.35(1)	-0.02(1)(1)	+0.01(2)(0)	-5.28(7)
$L_{0+} [10^{-3}/M_{\pi^+}]$	-0.99(4)(5)	-3.13(1)	-0.02(0)	-0.07(0)(1)	+0.07(7)(0)	-4.14(10)

- small q⁴ 2N terms, reliable nuclear corrections
- a large sensitivity of the S-wave threshold photoproduction cross section

$$a_0 = \frac{|\vec{k}|}{|\vec{q}|} \frac{d\sigma}{d\Omega} \Big|_{q=0} = |E_{0+}^{\pi^{0.3} \text{He}}|^2$$

to the elementary multipole $E_{0+}^{\pi^0 n}$

- Our prediction $E_{0+}^{\pi^0 3\text{He}} = -2.48(11)$ versus (model-dependent) extraction from the Saclay measurement $E_{0+}^{\pi^0 3\text{He}} = -2.8 \pm 0.2$ Argan et al. '80, '88

Summary and outlook

E.m. exchange current & charge density

- worked out at leading loop order (ready-to-use expressions available)
- 1π-exchange terms depend on a few LECs (some of which are poorly known), 2π-exchange terms parameter-free, short-range currents depend on L_{1,2}
 Converged? To be done: subleading 1-loop contributions and/or chiral EFT with Δ

Elastic form factors of the deuteron

- good agreement with the data (provided 1N FFs are used as input)
- the extracted value of d₉ consistent with other determinations
- To be done: extension to the 3N and 4N systems (to probe isovector currents)

²H/³He photodisintegration

- the best place to test the currents, seems to be sensitive to individual terms
- To be done: complete analysis including 1π and short-range contributions

Neutral pion photoproduction off ³He

- large sensitivity to the neutron multipole, nuclear corrections well under control
- prediction for ³He, experiments called for!

To be done: extensions beyond threshold, check of convergence, heavier nuclei, ...