

Evgeny Epelbaum, RUB

EINN2011, Paphos, Oct. 31 - Nov. 4, 2011

New vistas in chiral effective field theory for few-body systems

<u>Outline</u>

- Introduction
- Nuclear forces: where do we stand?

JÜLICH

- Few N's and external probes
- Few nucleons on the lattice
- Summary & outlook

Freitag, 4. November 2011

Chiral EFT for nuclear forces

Chiral EFT for nuclear forces

Nonlocal (long-range)
potentials obtained in
chiral perturbation
theory

Chiral EFT for nuclear forces

- Nonlocal (long-range) potentials obtained in chiral perturbation theory
- Parametrized in a most general way

Chiral expansion of the NN force

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...

• LO (Q⁰):
$$g_A \rightarrow 2 LECs$$

+ isospin-breaking corrections...

van Kolck et al. '93,'96; Friar et al. '99,'03,'04; Niskanen '02; Kaiser '06; E.E. et al. '04,'05,'07; ...

Two nucleons at N³LO

Entem, Machleidt '04; E.E., Glöckle, Meißner '05

np differential cross section at 96 MeV

Nucleon A_y at 67.5 MeV

Two nucleons at N³LO

Entem, Machleidt '04; E.E., Glöckle, Meißner '05

D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B478 (1996) 629; Phys. Lett. B 424 (1998) 390; Nucl. Phys. B534 (1998) 329,

- S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Phys. A677 (2000) 313; Phys. Rev. C 61 (2000) 044005.
- D. R. Phillips, S. R. Beane, and T. D. Cohen, Ann. Phys. (N.Y.) 263 (1998) 255.
- T. Frederico, V. S. Timoteo, and L. Tomio, Nucl. Phys. A653 (1999) 209.
- M. C. Birse, Phys. Rev. C 74 (2006) 014003; Phys. Rev. C 76 (2007) 034002.
- S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck, Nucl. Phys. A700 (2002) 377.
- M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 72 (2005) 054002.
- A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev. C 72 (2005) 054006.
- M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74 (2006) 054001.
- M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74 (2006) 064004; Erratum: Phys. Rev. C 75 (2007) 059905.

E. Epelbaum and U.-G. Meißner, On the renormalization of the one-pion exchange potential and the consistency of Weinberg's power counting, arXiv:nucl-th/0609037.

- M. Pavon Valderrama and E. Ruiz Arriola, Ann. Phys. (N.Y.) 323 (2008) 1037.
- D. R. Entem, E. Ruiz Arriola, M. Pavón Valderrama, and R. Machleidt, Phys. Rev. C 77 (2008) 044006.
- C.-J. Yang, Ch. Elster, and D. R. Phillips, Phys. Rev. C 77 (2008) 014002; 80 (2009) 034002, 044002.
- B. Long and U. van Kolck, Ann. Phys. (N.Y) 323 (2008) 1304.
- S. R. Beane, D. B. Kaplan, and A. Vuorinen, Perturbative nuclear physics, arXiv:0812.3938 [nucl-th].
- M. Pavon Valderrama, A. Nogga, E. Ruiz Arriola, and D. R. Phillips, Eur. Phys. J. A 36 (2008) 315.
- M. P. Valderrama, Perturbative Renormalizability of Chiral Two Pion Exchange in Nucleon-Nucleon Scattering, arXiv:0912.0699 [nucl-th].
- R. Machleidt, P. Liu, D. R. Entem, and E. Ruiz Arriola, Phys. Rev. C 81 (2010) 024001.
- E. Epelbaum and J. Gegelia, Eur. Phys. J. A41 (2009) 341.
- G. P. Lepage, How to Renormalize the Schrödinger Equation, nucl-th/9706029.

There is strong evidence that iterations of the OPEP are non-perturbative at $p \sim M_{\pi}$ in (some) spin-triplet channels Fleming, Mehen, Stewart, Cohen, Hansen, Gegelia ...

There is strong evidence that iterations of the OPEP are non-perturbative at $p \sim M_{\pi}$ in (some) spin-triplet channels Fleming, Mehen, Stewart, Cohen, Hansen, Gegelia ...

No approximation to the OPEP is known that would (i) capture the non-perturbative physics, (ii) be (analytically) resummable and (iii) (explicitly) renormalizable E.g. the Kaplan-Savage-Wise ansatz fulfills (ii), (iii) but not (i)...

There is strong evidence that iterations of the OPEP are non-perturbative at $p \sim M_{\pi}$ in (some) spin-triplet channels Fleming, Mehen, Stewart, Cohen, Hansen, Gegelia ...

- No approximation to the OPEP is known that would (i) capture the non-perturbative physics, (ii) be (analytically) resummable and (iii) (explicitly) renormalizable E.g. the Kaplan-Savage-Wise ansatz fulfills (ii), (iii) but not (i)...
- Numerical solution of the regularized LS equation is (presently) the only option: simple, self-consistency of (implicit) renormalization checkable a posteriori (Lepage) but residual Λ-dependence, maintaining symmetries not straightforward...

There is strong evidence that iterations of the OPEP are non-perturbative at p ~ M_π in (some) spin-triplet channels Fleming, Mehen, Stewart, Cohen, Hansen, Gegelia ...

- No approximation to the OPEP is known that would (i) capture the non-perturbative physics, (ii) be (analytically) resummable and (iii) (explicitly) renormalizable E.g. the Kaplan-Savage-Wise ansatz fulfills (ii), (iii) but not (i)...
- Numerical solution of the regularized LS equation is (presently) the only option: simple, self-consistency of (implicit) renormalization checkable a posteriori (Lepage) but residual A-dependence, maintaining symmetries not straightforward...
- A tricky issue:

first renormalize ($\Lambda \rightarrow \infty$) and then resum \neq first resum and then "renormalize"

violates LETs, not compatible with EFT EE, Gegelia

- There is strong evidence that iterations c are non-perturbative at $p \sim M_{\pi}$ in (some channels Fleming, Mehen, Stewart, Cohen, Ha
- No approximation to the OPEP is known physics, (ii) be (analytically) resummable E.g. the Kaplan-Savage-Wise ansatz fulf
- Numerical solution of the regularized LS self-consistency of (implicit) renormalizat
 Λ-dependence, maintaining symmetries
- A tricky issue: first renormalize ($\Lambda \rightarrow \infty$) and then resur

- There is strong evidence that iterations c are non-perturbative at $p \sim M_{\pi}$ in (some channels Fleming, Mehen, Stewart, Cohen, Ha
- No approximation to the OPEP is known physics, (ii) be (analytically) resummable E.g. the Kaplan-Savage-Wise ansatz fulf
- Numerical solution of the regularized LS self-consistency of (implicit) renormalizat
 Λ-dependence, maintaining symmetries
- A tricky issue: first renormalize ($\Lambda \rightarrow \infty$) and then resur
- More work needed to better understand power counting for NN amplitude. Insights from RG analysis (Birse)?

θ_{c.i}

0

Freitag, 4. November 2011

θ_{c.i}

Freitag, 4. November 2011

Chiral 3NF at N²LO

3NF first appears ar N²LO:

Chiral 3NF at N²LO

Freitag, 4. November 2011

Freitag, 4. November 2011

Nuclear structure with chiral forces

Importance truncated NCSM with SRG transformed chiral 2NF + 3NF

Roth, Langhammer, Calci, Binder, Navratil, PRL 107 (2011) 072501

Chiral 3NF at N²LO are also found to play important role in

- explaining the long lifetime of ¹⁴C Holt, Kaiser, Weise '10
- constraining the properties of neutron-rich matter & neutron star radii Hebeler et al.'10
- explaining the structure of Ca isotopes Holt, Otsuka, Schwenk, Suzuki '10

Chiral 3NF at N³LO

Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); arXiv:1108.3816

Chiral 3NF at N³LO

Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); arXiv:1108.3816

$$V_{2\pi-1\pi} = \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} \Big[\tau_{2} \cdot \tau_{1} (\vec{\sigma}_{3} \cdot \vec{q}_{2} \vec{q}_{2} \cdot \vec{q}_{1} F_{1}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{2}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{1} F_{3}(q_{2})) \\ + \tau_{3} \cdot \tau_{1} (\vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{q}_{2} \cdot \vec{q}_{1} F_{4}(q_{2}) + \vec{\sigma}_{2} \cdot \vec{q}_{1} F_{5}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{6}(q_{2}) \\ + \vec{\sigma}_{3} \cdot \vec{q}_{1} F_{7}(q_{2})) \\ + \tau_{2} \times \tau_{3} \cdot \tau_{1} \vec{\sigma}_{2} \times \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{8}(q_{2}) \Big] \\ V_{\text{ring}} = \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \tau_{2} \cdot \tau_{3} R_{1} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1} \tau_{2} \cdot \tau_{3} R_{2} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{3} \tau_{2} \cdot \tau_{3} R_{3} \\ + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot \vec{q}_{1} \tau_{2} \cdot \tau_{3} R_{4} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot \vec{q}_{3} \tau_{2} + \tau_{3} R_{6} + \vec{\tau}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{1} R_{7} \\ + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} R_{8} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{3} \cdot \vec{q}_{1} R_{9} + \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} R_{10} + \vec{q}_{1} \cdot \vec{q}_{3} \times \vec{\sigma}_{2} \tau_{1} + \tau_{2} \times \tau_{3} R_{11} \\ + \tau_{1} \cdot \tau_{2} S_{1} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{1} \tau_{1} \cdot \tau_{2} S_{2} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{3} \cdot \vec{q}_{1} \tau_{1} \cdot \tau_{2} S_{3} \\ + \vec{q}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} \tau_{1} \cdot \tau_{2} S_{4} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{3} \cdot \vec{q}_{3} \tau_{1} \cdot \tau_{2} S_{5} + \vec{\sigma}_{1} \cdot \vec{\sigma}_{1} \cdot \vec{\tau}_{2} S_{6} \\ + \vec{q}_{1} \cdot \vec{q}_{3} \times \vec{\sigma}_{1} \tau_{1} \cdot \tau_{2} \times \tau_{3} S_{7} \\ \text{explicit expressions for all Fi, Ri(q_{1},q_{2},q_{3}) \\ \text{and S}(q_{1},q_{2},q_{3}) \text{ are available in Bernard, EE, Krebs, Meißner, PRC77 (08) 064004} \\ \end{array}$$

Chiral 3NF at N³LO

Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); arXiv:1108.3816

Freitag, 4. November 2011

Chiral nuclear forces & the role of the Δ

Chiral nuclear forces & the role of the Δ

Chiral nuclear forces & the role of the Δ

chiral perturbation theory

chiral perturbation theory

chiral EFT with explicit Δ

chiral perturbation theory

chiral EFT with explicit Δ

neutron-proton peripheral scattering

chiral perturbation theory

chiral EFT with explicit Δ

neutron-proton peripheral scattering

chiral perturbation theory

chiral EFT with explicit Δ

neutron-proton peripheral scattering

chiral perturbation theory

chiral EFT with explicit Δ

neutron-proton peripheral scattering

chiral perturbation theory

chiral EFT with explicit Δ

neutron-proton peripheral scattering

Chiral expansion of the 3NF

Chiral expansion of the 3NF

Chiral expansion of the 3NF

Chiral EFT- Δ: ring topology

Notice:

- parameter-free,
- no suppression found for contributions from diagrams with two and three intermediate Δ...

Chiral EFT- Δ: ring topology (preliminary) Krebs, EE, in progress...

 Δ contributions to the ring topology at N³LO are considerably larger than the ones emerging in the Δ -less theory

 $V = \sum_{i} [\text{spin-space}]_{i} \times [\text{isospin}]_{i} \times f_{i}(r_{12}, r_{23}, r_{13})$

"Form factors" for $r_{12} = r_{23} = r_{13} \sim M_{\pi}^{-1}$:

Δ-less theory	contribu
$\vec{\sigma}_2 \cdot \hat{r}_{12} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23} \times (0.47 \text{ Me})$ $\vec{\sigma}_2 \cdot \hat{r}_{12} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23} \times (0.27 \text{ Me})$	V) $ec{\sigma}_2 \cdot \hat{r}_{12} imes \hat{r}_{23}$
$\vec{\sigma}_{1} \cdot \vec{r}_{13} \times \vec{r}_{23} \vec{\sigma}_{3} \cdot \vec{r}_{13} \times \vec{r}_{23} \vec{\tau}_{2} \cdot \vec{\tau}_{3} \times (-0.30 \text{ M})$ $\vec{\sigma}_{2} \cdot \hat{r}_{13} \times \hat{r}_{23} \vec{\sigma}_{3} \cdot \hat{r}_{13} \times \hat{r}_{23} \times (-0.27 \text{ M})$ $\vec{\sigma}_{2} \cdot \hat{r}_{13} \vec{\sigma}_{3} \cdot \hat{r}_{13} \times \hat{r}_{23} \times (0.23 \text{ M})$	
$\vec{\sigma}_{1} \cdot \hat{r}_{12} \times \hat{r}_{13} \vec{\sigma}_{3} \cdot \hat{r}_{13} \times \hat{r}_{23} \tau_{2} \cdot \tau_{3} \times (0.20 \text{ Me})$ $\vec{\sigma}_{1} \cdot \hat{r}_{12} \times \hat{r}_{13} \vec{\sigma}_{2} \cdot \hat{r}_{13} \times \hat{r}_{23} \tau_{2} \cdot \tau_{3} \times (0.20 \text{ Me})$	
$\vec{\sigma}_1 \cdot \vec{\sigma}_2 \cdot \vec{\sigma}_3 \times (0.15 \text{ Me})$ $\vec{\sigma}_1 \cdot \vec{\sigma}_2 \cdot \vec{\tau}_2 \times (0.14 \text{ Me})$	$ \vec{\sigma}_{1} \cdot \hat{r}_{12} \times \hat{r}_{13} \vec{\sigma}_{3} \cdot \hat{r}_{13} $ $ \vec{V}) \qquad \qquad \vec{\sigma}_{1} \cdot \hat{r}_{12} \times \hat{r}_{13} \vec{\sigma}_{3} \cdot \hat{r}_{13} $ $ \vec{V}) \qquad $
$\vec{\sigma}_1 \cdot \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{23} \times (-0.13 \mathrm{M})$	$\vec{\rm leV}$) $\vec{\sigma}$
$egin{array}{rcl} ec{\sigma}_1 \cdot ec{\sigma}_3 \; oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \; imes \; \left(0.14 \; { m Me} ight) \ ec{\sigma}_1 \cdot \hat{r}_{23} \: ec{\sigma}_3 \cdot \hat{r}_{23} \; imes \; \left(-0.13 \; { m Me} ight) \ ec{ au} \; ec{ au} \;$	V) IeV) ō

contributions of the Δ

$\vec{\sigma}_2 \cdot \hat{r}_{12} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23}$	×	(4.01 MeV)
1	×	(-3.12 MeV)
$\vec{\sigma}_2 \cdot \hat{r}_{13} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23}$	×	(-2.35 MeV)
$ec{\sigma}_2 \cdot \hat{r}_{13} ec{\sigma}_3 \cdot \hat{r}_{12}$	×	(1.18 MeV)
$ec{\sigma}_1\cdotec{\sigma}_2$	×	(1.07 MeV)
$\hat{r}_{12} imes \hat{r}_{23} ec{\sigma}_3 \cdot \hat{r}_{13} imes \hat{r}_{23} oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(1.06 MeV)
$\hat{r}_{12} imes \hat{r}_{13} ec{\sigma}_3 \cdot \hat{r}_{13} imes \hat{r}_{23} oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(1.02 MeV)
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3$	×	(-0.86 MeV)
$ec{\sigma}_2\cdot \hat{r}_{23}ec{\sigma}_3\cdot \hat{r}_{23}$	×	(-0.69 MeV)

Chiral EFT- Δ: ring topology (preliminary) Krebs, EE, in progress...

 $\vec{\sigma}_2 \cdot \vec{\sigma}_1 \cdot$

The new terms in the chiral 3NF will be tested in the deuteron breakup experiment in COSY (polarization observables, nucleon energy in the range 30...50 MeV)

Δ -less theory

$\vec{\sigma}_2 \cdot \hat{r}_{12} \times $	$\hat{r}_{23}\vec{\sigma}_3\cdot\hat{r}_{13}\times\hat{r}_{23}$	×	$(0.47 { m MeV})$
$\vec{\sigma}_1 \cdot \hat{r}_{13} imes \hat{r}_{23} \vec{\sigma}_3 \cdot \vec{r}_{23}$	$\hat{r}_{13} imes \hat{r}_{23} \ oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(-0.30 MeV)
$\vec{\sigma}_2 \cdot \hat{r}_{13} \times \vec{r}_{13}$	$\hat{r}_{23}\vec{\sigma}_3\cdot\hat{r}_{13}\times\hat{r}_{23}$	×	$(-0.27 { m MeV})$
	$\vec{\sigma}_2 \cdot \hat{r}_{13} \vec{\sigma}_3 \cdot \hat{r}_{12}$	×	$(0.23 { m MeV})$
$\vec{\sigma}_1 \cdot \hat{r}_{12} imes \hat{r}_{13} \vec{\sigma}_3 \cdot \vec{r}_{13}$	$\hat{r}_{13} imes \hat{r}_{23} \ oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	$(0.20 { m MeV})$
$\vec{\sigma}_1 \cdot \hat{r}_{12} imes \hat{r}_{13} \vec{\sigma}_3 \cdot \vec{r}_{13}$	$\hat{r}_{12} imes \hat{r}_{13} \ oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(-0.18 MeV)
	$ec{\sigma}_2\cdotec{\sigma}_3$	×	(0.15 MeV)
	$ec{\sigma}_1\cdotec{\sigma}_3\;oldsymbol{ au}_2\cdotoldsymbol{ au}_3$	×	(0.14 MeV)
	$\vec{\sigma}_1 \cdot \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{23}$	×	(-0.13 MeV)

contributions of the Δ

$\vec{\sigma}_2 \cdot \hat{r}_{12} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23}$	×	(4.01 MeV)
1	×	(-3.12 MeV)
$\vec{\sigma}_2 \cdot \hat{r}_{13} \times \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{13} \times \hat{r}_{23}$	×	(-2.35 MeV)
$ec{\sigma}_2 \cdot \hat{r}_{13} ec{\sigma}_3 \cdot \hat{r}_{12}$	×	(1.18 MeV)
$ec{\sigma}_1\cdotec{\sigma}_2$	×	(1.07 MeV)
$\hat{r}_{12} imes \hat{r}_{23} ec{\sigma}_3 \cdot \hat{r}_{13} imes \hat{r}_{23} oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(1.06 MeV)
$\hat{r}_{12} imes \hat{r}_{13} ec{\sigma}_3 \cdot \hat{r}_{13} imes \hat{r}_{23} oldsymbol{ au}_2 \cdot oldsymbol{ au}_3$	×	(1.02 MeV)
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3$	×	(-0.86 MeV)
$ec{\sigma}_2\cdot \hat{r}_{23}ec{\sigma}_3\cdot \hat{r}_{23}$	×	(-0.69 MeV)

Few-N physics with external probes

External probes: π -deuteron scattering

Pion-nucleon amplitude at threshold (in the isospin limit): $T^{ba}_{\pi N} \propto \left[\delta^{ab} a^+ + i \epsilon^{bac} \tau^c a^- \right]$

Recent data on hadronic atoms:

πH: $\epsilon_{1s} = (-7.120 \pm 0.012) \text{ eV}$, $\Gamma_{1s} = (0.823 \pm 0.019) \text{ eV}$ Gotta et al., Lect. Notes. Phys. 745 (08) 165 πD: $\epsilon_{1s}^D = (2.356 \pm 0.031) \text{ eV}$ Strauch et al., Eur. Phys. J A47 (11) 88

Use chiral EFT to extract information on a^+ and a^- from $a_{\pi d}$: Weinberg '92; Beane et al.'98,'03; Liebig et al.'11; Meißner et al. '06; Baru et al. '04-'11;...

- careful analysis of IB effects
- radiative corrections included
- the scale $\sqrt{M_{\pi}m_N}$ must be taken into account (3-body singularity, dispersive corrections)

General kinematics Pastore, Schiavilla, Girlanda, Viviani, '08-'11; Kölling, Krebs, EE, Meißner, '09-'11

Freitag, 4. November 2011

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{split} f_1\left(k\right) &= & 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_8\,, \quad f_2\left(k\right) = 2ie\frac{g_A}{F_\pi^2}\,\bar{d}_9\,, \quad f_3\left(k\right) = -ie\frac{g_A}{64F_\pi^4\pi^2}\left[\,g_A^3\left(2L(k)-1\right)+32F_\pi^2\pi^2\bar{d}_{21}\right]\,, \\ f_4\left(k\right) &= & -ie\frac{g_A}{4F_\pi^2}\,\bar{d}_{22}\,, \quad f_5\left(k\right) = -ie\frac{g_A^2}{384F_\pi^4\pi^2}\left[2(4M_\pi^2+k^2)L(k)+\left(6\,\bar{l}_6-\frac{5}{3}\right)k^2-8M_\pi^2\right]\,, \\ f_6\left(k\right) &= & -ie\frac{g_A}{F_\pi^2}M_\pi^2\,\bar{d}_{18}\,, \end{split}$$

$$\begin{split} \vec{J}_{1\pi} &= \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \left[\vec{q}_1 \times \vec{q}_2 \right] \left[\tau_2^3 f_1(k) + \vec{\tau}_1 \cdot \vec{\tau}_2 f_2(k) \right] + \left[\vec{\tau}_1 \times \vec{\tau}_2 \right]^3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{q_2^2 + M_\pi^2} \Big\{ \vec{k} \times \left[\vec{q}_2 \times \vec{\sigma}_1 \right] f_3(k) \\ &+ \vec{k} \times \left[\vec{q}_1 \times \vec{\sigma}_1 \right] f_4(k) + \vec{\sigma}_1 \cdot \vec{q}_1 \left(\frac{\vec{k}}{k^2} - \frac{\vec{q}_1}{q_1^2 + M_\pi^2} \right) f_5(k) + \left[\frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} \vec{q}_1 - \vec{\sigma}_1 \right] f_6(k) \Big\} \end{split}$$

$$\begin{split} f_{1}\left(k\right) &= 2ie\frac{g_{A}}{F_{\pi}^{2}}d_{3} \quad f_{2}\left(k\right) = 2ie\frac{g_{A}}{F_{\pi}^{2}}d_{3} \quad f_{3}\left(k\right) = -ie\frac{g_{A}}{64F_{\pi}^{4}\pi^{2}}\left[g_{A}^{3}\left(2L(k)-1\right)+32F_{\pi}^{2}\pi^{2}d_{2}\right], \\ f_{4}\left(k\right) &= -ie\frac{g_{A}}{4F_{\pi}^{2}}d_{2}, \quad f_{5}\left(k\right) = -ie\frac{g_{A}^{2}}{384F_{\pi}^{4}\pi^{2}}\left[2(4M_{\pi}^{2}+k^{2})L(k)+\left(\sqrt{\ell_{6}}-\frac{5}{3}\right)k^{2}-8M_{\pi}^{2}\right], \\ f_{6}\left(k\right) &= -ie\frac{g_{A}}{F_{\pi}^{2}}M_{\pi}^{2}d_{1}, \\ f_{6}\left(k\right) &= -ie\frac{g_{A}}{F_{\pi}^{2}}M_{\pi}^{2}d_{1}, \\ determined from other sources: \\ \pi N \text{ scattering, } \pi \text{ photo-/electroproduction, ...} \end{split}$$

Explicit expressions for two-pion exchange and short-range currents and the corresponding charge densities are available as well.

- Kölling, Krebs, EE, Meißner, PRC80 (09); arXiv:1107.0602
- Pastore, Schiavilla, Goity PRC78 (08); Pastore, Girlanda, Schiavilla, Viviani et al., PRC80 (09); arXiv:1106.4539

- LECs determined assuming Δ-dominance + magnetic moments of ²H, ³H, ³He + σ_{np}^{γ}
- predictions for nd, n³He radiative capture reactions for thermal neutrons (MEC dominated)
- related recent work: Lazauskas, Song, Park '09

Deuteron photodisintegration

Rozpedzik et al., PRC 83 (11) 064004

Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502

Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502

	3 ⁸	³ H		le		$^{4}\mathrm{He}$		
	$E_{g.s.}$	$\langle r_p^2 \rangle^{1/2}$	$E_{g.s.}$	$\langle r_p^2 \rangle^{1/2}$	$E_{g.s.}$	$\langle r_p^2 \rangle^{1/2}$		
NN	-7.852(4)	1.651(5)	-7.124(4)	1.847(5)	-25.39(1)	1.515(2)		
NN+NNN	-8.473(4)	1.605(5)	-7.727(4)	1.786(5)	-28.50(2)	1.461(2)		
Expt.	-8.482	1.60	-7.718	1.77	-28.296	1.467(13)		

Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502

Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502

The determined value of *D* can be used to compute the muon doublet capture rate in

 $\mu^- + d \rightarrow n + n + \nu_\mu$

 $\Lambda_{1/2} = (392.0 \pm 2.3) s^{-1}$ Marcucci et al., PRC 83 (11) 014002

(a somewhat different value reported in Adam et al., arXiv:1110.3183)

Exp: $\Lambda_{1/2} = (470.0 \pm 29)s^{-1}$ Martino '86 $\Lambda_{1/2} = (409.0 \pm 40)s^{-1}$ Cargnelli et al., '86, '87

New measurement planned by the MuSun Collaboration @ PSI: 1.5% accuracy for $\Lambda_{1/2}$

Test chiral EFT

Precision calculation of weak nuclear reactions

$$p + p \rightarrow d + e^{+} + \nu_{e},$$

$$p + p + e^{-} \rightarrow d + \nu_{e},$$

$$p + {}^{3}He \rightarrow {}^{4}He + e^{+} + \nu_{e},$$

$${}^{7}Be + e^{-} \rightarrow {}^{7}Li + \nu_{e},$$

$${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + \nu_{e}$$

Few-N physics on the lattice

In collaboration with:

Dean Lee (North Carolina), Hermann Krebs (Bochum), Ulf-G. Meißner (Bonn/Jülich)

Borasoy, EE, Krebs, Lee, Meißner, EPJ A31 (07) 105; A34 (07) 185; A35 (08) 343; A35 (08) 357; EE, Krebs, Lee, Meißner, EPJ A40 (09) 199; A41 (09) 125; A45 (10) 335; PRL 104 (10) 142501; PRL 106 (11) 192501

much more efficient for atomic nuclei

hard to go beyond 1 hadron...

Calculation strategy

Lattice action (improved to minimize discr. errors, accurate to Q³)

Solve 2N Schröd. Eq. with the spherical wall boundary cond. \implies phase shifts \implies fix the LO and NLO (per-turbatively) contact terms

projection Monte Carlo (with auxiliary fields)

Determine the LECs D, E from ³H and ⁴He BEs \implies the nuclear Hamiltonian completely fixed up to NNLO (Q³)

(Multi-channel) projection Monte Carlo with auxiliary fields

Simulate the ground (and excited) states of light nuclei

Lattice actions

Ground state energies

Slater determinant of 1N states $|\Psi(t')\rangle = (M_{SU(4)})^{L_{t_0}} |\Psi^{init}\rangle$ - cheap, no sign problem (even A) Lee'05,'07; Chen, Lee, Schäfer '04 $L_{t_0}\alpha_t$ transfer matrix (pion-less, SU(4)-inv.): $M_{SU(4)} =: \exp(-H_{SU(4)}\alpha_t)$:

• Transition amplitude: $Z_{\text{LO}}(t) = \langle \Psi(t') | (M_{\text{LO}})^{L_t} | \Psi(t') \rangle$ with $M_{\text{LO}} =: \exp(-H_{\text{LO}}\alpha_t):$

Ground state energy: $\exp\left(-E_0^{\text{LO}}\alpha_t\right) = \lim_{t \to \infty} Z(t + \alpha_t)/Z(t)$

³H-³He binding energy difference

E.E., Krebs, Lee, Meißner, PRL 104 (10) 142501

Infinite-volume extrapolations via: $E(L) = E(\infty) - \frac{C}{L}e^{-L/L_0} + O\left(e^{-\sqrt{2}L/L_0}\right)$ Lüscher '86

Ground states of ⁸Be and ¹²C

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501

Simulations of the ⁸Be and ¹²C GS energies (L=11.8 fm)

Various contributions to ⁴He, ⁸Be and ¹²C GS energy

	⁴ He	⁸ Be	¹² C
$\overline{IO(O(0))}$	24.8(2)	60.0(7)	110(2)
$\frac{10}{10} \left[O(Q^2) \right]$	-24.8(2) -24.7(2)	-60(2)	-110(2) -93(3)
$IB + EM [O(Q^2)]$	-23.8(2)	-55(2)	-85(3)
NNLO $[O(Q^3)]$	-28.4(3)	-58(2)	-91(3)
Experiment	-28.30	-56.50	-92.16

The Hoyle state

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501

The E.E., Krebs, Le	Hoy e, Meißner, PRL	106 (*	e st 11) 192501	ate	T			$2_{1}^{+}, J_{2}^{+}, J_{2}^{+}, J_{2}^{+}$	$0^+_1 \bullet 0^+_2 \bullet $		
			LC	$O[O(Q^0)]$	·)-	я	H H			_
			NLC	$O[O(Q^2)]$	-		-	-	+		_
			IB + EN	$\mathbb{I}\left[O(Q^2)\right]$	-			H		-	_
			NNLC	$O[O(Q^3)]$	-				H:		_
			Ex	periment	-				•		_
					1				1		
		11			-11	0	-100	-90	-80	-70	
	0^{+}_{2}	2_{1}^{+}	$, J_z = 0$	$2_1^+, J_z = 2$	_ 		E	C (MeV))		
LO $[O(Q^0)]$	-94(2)	_	-92(2)	-89(2)							
NLO $[O(Q^2)]$	-82(3)	-	-87(3)	-85(3)							
$\frac{10 + EM [O(Q^2)]}{NNLO [O(Q^3)]}$ Experiment	-85(3) -84.51		-80(3) -88(3) -87	-78(3) -90(4) 7.72							

Freitag, 4. November 2011

Summary & outlook

Nuclear chiral EFT enters precision era:

accurate NN potentials at N³LO, detailed analyses of MECs, high-precision determinations of π N scatt. lengths, precision calculations of the radiative/muon capture reactions, ...

Time to address unsolved problems:

e.g. the structure of the 3NF (work in progress...)

New trends/directions:

chiral EFT with explicit Δ , combining EFT with ab-initio many-body methods to provide access to spectra of light nuclei, bridging strong, weak and e.m. few-N reactions, ...

Dedicated experiments:

pd breakup @COSY, MuSun, experiments at MAMI, MAXIab, HIγS, ...

Further topics (not covered in the talk):

nuclear parity violation, hypernuclear physics, few-N systems and physics beyond the Standard Models (e.g. neutron EDM), ...
Two-nucleon phase shifts (LO₃)

E.E., Krebs, Lee, Meißner, EPJA 45 (10) 335

- 9 LECs fitted to S- and P-waves and the deuteron quadrupole moment
- Coulomb repulsion and isospin-breaking effects taken into account
- Accurate results, deviations consistent with the expected size of higher-order terms

Freitag, 4. November 2011

$$V_{2\pi-1\pi} = \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} \Big[\tau_{2} \cdot \tau_{1} (\vec{\sigma}_{3} \cdot \vec{q}_{2} \vec{q}_{2} \cdot \vec{q}_{1} F_{1}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{2}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{1} F_{3}(q_{2})) \\ + \tau_{3} \cdot \tau_{1} (\vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{q}_{2} \cdot \vec{q}_{1} F_{4}(q_{2}) + \vec{\sigma}_{2} \cdot \vec{q}_{1} F_{5}(q_{2}) + \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{6}(q_{2}) \\ + \vec{\sigma}_{3} \cdot \vec{q}_{1} F_{7}(q_{2})) \\ + \tau_{2} \times \tau_{3} \cdot \tau_{1} \vec{\sigma}_{2} \times \vec{\sigma}_{3} \cdot \vec{q}_{2} F_{8}(q_{2}) \Big] \\ V_{\text{ring}} = \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \tau_{2} \cdot \tau_{3} R_{1} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1} \tau_{2} \cdot \tau_{3} R_{2} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{3} \tau_{2} \cdot \tau_{3} R_{3} \\ + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot \vec{q}_{1} \tau_{2} \cdot \tau_{3} R_{4} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot \vec{q}_{3} \tau_{2} \cdot \vec{\tau}_{3} R_{5} + \tau_{1} \cdot \tau_{3} R_{6} + \vec{\tau}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{1} R_{7} \\ + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} R_{8} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{3} \cdot \vec{q}_{1} R_{9} + \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} R_{10} + \vec{q}_{1} \cdot \vec{q}_{3} \times \vec{\sigma}_{2} \tau_{1} \cdot \tau_{2} \times \tau_{3} R_{11} \\ + \tau_{1} \cdot \tau_{2} S_{1} + \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{1} \tau_{1} \cdot \tau_{2} S_{2} + \vec{\sigma}_{1} \cdot \vec{q}_{3} \vec{\sigma}_{3} \cdot \vec{q}_{1} \tau_{1} \cdot \tau_{2} S_{3} \\ + \vec{q}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} \tau_{1} \cdot \tau_{2} \times \tau_{3} S_{7} \end{pmatrix}$$
explicit expressions for all F_i, R_i(q_{1},q_{2},q_{3}) and S_i(q_{1},q_{2},q_{3}) are available in Bernard, E_i, Krebs, Meißner, PRC77 (08) 064004

Freitag, 4. November 2011

no unknown LECs contribute *and parameter-free!*

