Nuclear Physics from QCD:
 State of the Art \& Open Challenges

Chiral Perturbation Theory

QCD with 2 light flavors

- Idealized world [$m_{u}=m_{d}=0$], zero-energy limit: non-interacting massless GB (+ strongly interacting matter fields)
- Real world [$m_{u}, m_{d} \ll \Lambda_{Q C D}$], low energy: weakly interacting light GB (+ strongly interacting matter fields)

ChIT: expansion about the ideal world

Write down effective Lagrangian for Bs (pions) \longleftarrow chiral symmetry
Compute the amplitude up to a given order in $Q \in\left(p_{i} / \Lambda_{\chi}, M_{\pi} / \Lambda_{\chi}\right) \longleftarrow$ power counting

ChPT in the 1 N sector: Need to ensure that m_{N} does not spoil the power counting...

$$
\xrightarrow{\text { chiral limit }} \delta m_{N}=-\frac{3 g_{A}^{2} m_{N}^{3}}{\left(4 \pi F_{\pi}\right)^{2}}\left(16 \pi^{2} L(\mu)+\frac{1}{2} \ln \frac{m_{N}^{2}}{\mu^{2}}\right)+\mathcal{O}(d-4)
$$

Heavy Baryon: use $1 / m$ expanded Lagrangian Jenkins, Manohar, Bernard, Meißner, ...
Infrared Reg.: expand the integrand, compute the integrals using DR \& resum...
Ellis, Tang, Beecher, Leutwyler, ...

EOMS: relativistic propagators + DR + additional subtractions Fuchs, Gegelia, Japaridze, Scherer, ...
Chiral EFT with explicit $\Delta(1232):$ assign $m_{\Delta}-m_{N} \sim M_{\pi}$ Jenkins, Manohar, Hemmert, Pascalutsa, ...

Chiral Efr for nuclear systems

Chiral Eff for nuclear systems

A new, soft scale associated with nuclear binding
$Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ to be generated dynamically (need resummations...)

Chiral Eff for nuclear systems

A new, soft scale associated with nuclear binding
$Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ to be generated dynamically (need resummations...)

Pionless EFT (valid for $\sqrt{m_{N} E_{B}} \ll Q \ll M_{\pi}$)

- zero-range forces between nucleons
- for 2N equivalent to Effective Range Theory
- universality, Efimov physics, cold gases, astro,... Hammer, Platter, Grießhammer, Chen, Rupak, Savage, Ando,

Chiral Eff for nuclear systems

A new, soft scale associated with nuclear binding
$Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ to be generated dynamically (need resummations...)

Pionless EFT (valid for $\sqrt{m_{N} E_{B}} \ll Q \ll M_{\pi}$)

- zero-range forces between nucleons
- for 2N equivalent to Effective Range Theory
- universality, Efimov physics, cold gases, astro,... Hammer, Platter, Grießhammer, Chen, Rupak, Savage, Ando,

Chiral EFT (valid for $Q \sim M_{\pi}$) Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Machleidt, Entem, Higa, Robilotta,...

- well below π-production threshold: Schrödinger equation for nucleons interacting via zero-range and long-range potentials (pion exchanges)

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived in ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

- access to heavier nuclei (ab initio few-/many-body methods) Barrett, Navratil, Nogga, Roth, Schwenk, Hebeler, Furnstahl, Vary, Schiavilla,

Chiral Eff for nuclear systems

Iterations of V in the LS equation generate UV divergences that cannot be absorbed by counterterms in V (truncated at a given order)...

How to renormalize the Schrödinger equation?
Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...

Chiral Eff for nuclear systems

Iterations of V in the LS equation generate UV divergences that cannot be absorbed by counterterms in V (truncated at a given order)...

„How to renormalize the Schrödinger equation", G. P. Lepage, nucl-th/9706029
Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...
\longrightarrow use a finite cutoff, self-consistency checks via „Lepage plots"

Chiral Eff for nuclear systems

Iterations of V in the LS equation generate UV divergences that cannot be absorbed by counterterms in V (truncated at a given order)...

„How to renormalize the Schrödinger equation", G. P. Lepage, nucl-th/9706029
Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia,
\longrightarrow use a finite cutoff, self-consistency checks via „Lepage plots"
cutoff-independent results for phase shifts at LO
(i) non-renormalizability of the LO equation is an artifact of the HB expansion EE, Gegelia, PLB 716 (2012) 338
(ii) renormalizable LO eq. based on manifestly Lorentz invariant Lagrangian
(iii) higher-order corrections (e.g. TPE) to be treated perturbatively in progress...

Nucleon-nucleon potential at N3LO

van Kolck et al.'94; Friar \& Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...

- Long-range: parameter-free (all LECs from $\pi \mathrm{N}$)
- Short-range part: 24 LECs tuned to NN data

- Accurate description of NN data up to $\sim 200 \mathrm{MeV}$

Entem-Machleidt, EE-Glöckle-Meißner

Recent reviews:
EE, Prog. Part Nucl. Phys. 57 (06) 654;
EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773;
Entem, Machleidt, Phys. Rept. 503 (11) 1;
EE, Meißner, arXiv:1201.2136, Ann. Rev. Nucl. Part. Sci. (in press)
χ expansion of the long-range force

The challenge: Understanding the 3N force

- Today's few- and many-body calculations have reached the level of accuracy at which it is absolutely necessary to include 3NF
- In spite of the decades of efforts, the (spin) structure of the 3NF is still poorely understood Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301
- Modeling (phenomenology) is difficult in particular due to the complicated structure of 3NF. E.g. 22 „structure functions" $\mathcal{F}_{i}\left(r_{12}, r_{23}, r_{31}\right)$ needed to parametrize only the static part:

$$
V_{3 \mathrm{~N}}^{\text {static }}=\sum_{i=1}^{22} \mathcal{G}_{i}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}, \boldsymbol{\tau}_{3}, \vec{r}_{12}, \vec{r}_{23}\right) \mathcal{F}_{i}\left(r_{12}, r_{23}, r_{31}\right)+\text { permutations }
$$

The challenge: Understanding the 3N force

- Today's few- and many-body calculations have reached the level of accuracy at which it is absolutely necessary to include 3NF
- In spite of the decades of efforts, the (spin) structure of the 3NF is still poorely understood Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301
- Modeling (phenomenology) is difficult in particular due to the complicated structure of 3NF. E.g. 22 „structure functions" $\mathcal{F}_{i}\left(r_{12}, r_{23}, r_{31}\right)$ needed to parametrize only the static part:

$$
V_{3 \mathrm{~N}}^{\text {static }}=\sum_{i=1}^{22} \mathcal{G}_{i}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}, \boldsymbol{\tau}_{3}, \vec{r}_{12}, \vec{r}_{23}\right) \mathcal{F}_{i}\left(r_{12}, r_{23}, r_{31}\right)+\text { permutations }
$$

Leading chiral 3NF and 3N/4N continuum

- Nd scattering: accurate description at low energy except for A_{y}-puzzle (fine tuned) and some breakup configurations
- Uncertainty grows rapidly with energy (higher orders ?)
- 4 N continuum: an emerging field...

2 LECs tuned to few-N data (e.g. ${ }^{3} \mathrm{H},{ }^{4} \mathrm{He} \mathrm{BEs}$)
p-3He differential cross section

A_{y}-puzzle in $\mathrm{p}{ }^{3} \mathrm{He}$ elastic scattering

Leading chiral 3NF and nuclear stiructure

Ab initio methods (NCSM, GFMC, CCM, Lattice, ...) + renormalization ideas (SRG, Vlow-k, UCOM) + computational resources \longrightarrow precision ab initio nuclear structure calculations Barrett, Navratil, Nogga, Roth, Schwenk, Hebeler, Furnstahl, Vary, Ormand, ..

NCSM calculation of p-shell nuclei with chiral 2NF+3NF Navratil et al. '07

- sensitive to details of the 3NF
- many promising results (neutron-rich nuclei, long lifetime of ${ }^{14} \mathrm{C}$, neutron star radii, ...)
- still room for improvement and some open questions \longrightarrow higher-order 3NFs..

Chiral 3NF: higher-order corrections
 Bernard, EE, Krebs '08 '11; Gasparyan, Krebs, EE '12

- all LECs determined in $\pi \mathrm{N}$
- very good convergence of the chiral expansion
- only 10 out of 22 Fi's...

Chiral 3NF: higher-order corrections

- all LECs determined in $\pi \mathrm{N}$
- very good convergence of the chiral expansion
- only 10 out of 22 Fi's...

- parameter-free
- rich operator structure (all Fi's nonzero)
- not converged at N3LO

Chiral 3NF: higher-order corrections
 Bernard, EE, Krebs '08 '11; Gasparyan, Krebs, EE '12

Chiral 3NF: higher-order corrections
 Bernard, EE, Krebs '08 '11; Gasparyan, Krebs, EE '12

Precision physics with light nuclei: Recent examples

Pion-deuteron scattering

Pion-nucleon amplitude at threshold (in the isospin limit): $T_{\pi N}^{b a} \propto\left[\delta^{a b} a^{+}+i \epsilon^{b a c} \tau^{c} a^{-}\right]$ Recent data on hadronic atoms:

$$
\begin{array}{ll}
\pi H: & \epsilon_{1 s}=(-7.120 \pm 0.012) \mathrm{eV}, \quad \Gamma_{1 s}=(0.823 \pm 0.019) \mathrm{eV} \text { Gotta et al., Lect. Notes. Phys. } 745 \text { (08) } 165 \\
\pi D: & \epsilon_{1 s}^{D}=(2.356 \pm 0.031) \mathrm{eV} \text { Strauch et al., Eur. Phys. J A47 (11) } 88
\end{array}
$$

Use chiral EFT to extract information on a^{+}and a^{-}from $a_{\pi d}$
Weinberg; Beane, Bernard, Lee, Meißner, EE, Phillips;
Baru, Liebig, Hoferichter, Hanhart, Nogga, ...

- careful analysis of IB effects
- radiative corrections included

$$
\begin{aligned}
& a^{+}=(7.6 \pm 3.1) \times 10^{-3} M_{\pi}^{-1} \\
& a^{-}=(86.1 \pm 0.9) \times 10^{-3} M_{\pi}^{-1}
\end{aligned}
$$

Magnetic moments of light nuclei

Use chiral EFT to compute EM and weak nuclear currents

Park-Min-Rho, Girlanda-Pastore-Schiavilla-Viviani-Wiringa, Kölling-EE-Krebs-Meißner, Lazauskas, Phillips, ...

GFMC results for magnetic moments of light nuclei with chiral MECs
Pastore, Pieper, Schiavilla, Wiringa, arXiv:1208.6034

Nuclear Lattice Effiective Field Theory

The Collaboration: E.E. (Bochum), Hermann Krebs (Bochum), Timo Lahde (Jülich), Dean Lee (NC State), Ulf-G. Meißner (Bonn/Jülich)

Discretized version of chiral EFT for nuclear dynamics

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derivable within ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

Borasoy, E.E., Krebs, Lee, Meißner, Eur. Phys. J. A31 (07) 105, Eur. Phys. J. A34 (07) 185,
Eur. Phys. J. A35 (08) 343,
Eur. Phys. J. A35 (08) 357,
E.E., Krebs, Lee, Meißner, Eur. Phys. J A40 (09) 199, Eur. Phys. J A41 (09) 125,

Phys. Rev. Lett 104 (10) 142501,
Eur. Phys. J. 45 (10) 335,
Phys. Rev. Lett. 106 (11) 192501 arXiv:1208.1328

J) JÜLICH
erc
European Research Council

Calculation strategy

- Simulation based on LO action ($1 \pi+$ LO contacts), higher orders perturbatively
- Eucl.-time propagation of A nucleons \rightarrow transition amplitude $Z_{\mathrm{LO}}(t)=\left\langle\Psi\left(t^{\prime}\right)\right|\left(M_{\mathrm{LO}}\right)^{L_{t}}\left|\Psi\left(t^{\prime}\right)\right\rangle$ \longrightarrow ground- (and excited-) state energies $\exp \left(-E_{0}^{\mathrm{LO}} \alpha_{t}\right)=\lim _{t \rightarrow \infty} Z\left(t+\alpha_{t}\right) / Z(t)$
- Auxiliary-field formulation: nucleons propagating in the background of (instantaneous) pion + auxiliary fields...

Ground stities of ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$

Simulations for ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}, \mathrm{L}=11.8 \mathrm{fm}$

Ground state energies ($\mathrm{L}=11.8 \mathrm{fm}$) of ${ }^{4} \mathrm{He},{ }^{8} \mathrm{Be},{ }^{12} \mathrm{C}$ \& ${ }^{16} \mathrm{O}$

	${ }^{4} \mathrm{He}$	${ }^{8} \mathrm{Be}$	${ }^{12} \mathrm{C}$	${ }^{16} \mathrm{O}$
$\mathrm{LO}\left[Q^{0}\right]$, in MeV	$-28.0(3)$	$-57(2)$	$-96(2)$	$-144(4)$
NLO $\left[Q^{2}\right]$, in MeV	$-24.9(5)$	$-47(2)$	$-77(3)$	$-116(6)$
NNLO $\left[Q^{3}\right]$, in MeV	$-28.3(6)$	$-55(2)$	$-92(3)$	$-135(6)$
Experiment, in MeV	-28.30	$\frac{-56.5}{-92.2}$	$\frac{-127.6}{}$	

The Hoyle state

EE, Krebs, Lee, Meißner, PRL 106 (11) 192501; EE, Krebs, Lähde, Lee, Meißner, arXiv:1208.1328

The Hoyle state

EE, Krebs, Lee, Meißner, PRL 106 (11) 192501; EE, Krebs, Lähde, Lee, Meißner, arXiv:1208.1328

Structure of the Hoyle state

Probing (a-cluster) structure of the $\mathbf{0 1}^{+}, \mathrm{O}_{2^{+}}$states

Summary and outlook

Nuclear chiral dynamics enters precision era:

- low-energy NN scattering is accurately described at $\mathrm{N}^{3} \mathrm{LO}$
- many high-precision few-N studies: pion-N scatt. lengths, Compton scattering, pion photoproduction, FFs, radiative/muon capture...
- impressive progress in ab initio many-body methods, precise nuclear structure calculations for light nuclei become reality!
- The main source of uncertainty is presently due to the 3NF... (higher-order corrections in progress)

Nuclear lattice simulations:

- combining EFT and lattice simulations \rightarrow access to (light) nuclei
- exciting results for the ${ }^{12} \mathrm{C}$ spectrum, first ab initio calculation of the Hoyle state Work in progress: quark mass dependence of the Hoyle state, spectrum of ${ }^{16} \mathrm{O}$, volume dependence, reactions ...

