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 Chiral Perturbation Theory

Idealized world [                       ], zero-energy limit: non-interacting massless GBs 
(+ strongly interacting matter fields) 
Real world [                            ], low energy: weakly interacting light GBs 
(+ strongly interacting matter fields) 

mu = md = 0

1

mu, md � ΛQCD

1

QCD with 2 light flavors

Write down effective Lagrangian for GBs (pions)               chiral symmetry
Compute the amplitude up to a given order in                                               power countingQ ∈ (pi/Λχ, Mπ/Λχ)
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ChPT: expansion about the ideal world

ChPT in the 1N sector: Need to ensure that mN does not spoil the power counting...
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Heavy Baryon: use 1/m expanded Lagrangian Jenkins, Manohar, Bernard, Meißner, ... 

chiral limit

Infrared Reg.: expand the integrand, compute the integrals using DR & resum...
Ellis, Tang, Becher, Leutwyler, ...

EOMS: relativistic propagators + DR + additional subtractions Fuchs, Gegelia, Japaridze, Scherer, ...

Chiral EFT with explicit Δ(1232):  assign  

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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Chiral EFT for nuclear systems
4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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A new, soft scale associated with nuclear binding 

to be generated dynamically (need resummations...) 
in 1S0 (3S1)
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to be generated dynamically (need resummations...) 
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Pionless EFT (valid for                              )
�
mNEB � Q � Mπ (1)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (2)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form
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with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (??) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result

IR(p, ν) = I(p)− I(i ν) = −m(ν + i p)
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The NLO correction to the amplitude consists of five contributions. First

we give the result of the two diagrams with NLO contact interaction vertex
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- zero-range forces between nucleons
- for 2N equivalent to Effective Range Theory 
- universality, Efimov physics, cold gases, astro,...

Hammer, Platter, Grießhammer, Chen, Rupak, Savage, Ando, ....
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contact interactions

multiple GB 
exchange (ChPT)

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Machleidt, Entem, Higa, Robilotta,...

- well below π-production threshold: Schrödinger equation
  for nucleons interacting via zero-range and long-range
  potentials (pion exchanges)
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derived in ChPT

- access to heavier nuclei (ab initio few-/many-body methods) 
Barrett, Navratil, Nogga, Roth, Schwenk, Hebeler, Furnstahl, Vary, Schiavilla, ...
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How to renormalize the Schrödinger equation?
Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, 
van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ... 

Iterations of V in the LS equation generate UV divergences that 
cannot be absorbed by counterterms in V (truncated at a given order)...

Chiral EFT for nuclear systems
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use a finite cutoff, self-consistency checks via „Lepage plots“

„How to renormalize the Schrödinger equation“, G. P. Lepage, nucl-th/9706029
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Iterations of V in the LS equation generate UV divergences that 
cannot be absorbed by counterterms in V (truncated at a given order)...

Chiral EFT for nuclear systems

use a finite cutoff, self-consistency checks via „Lepage plots“

„How to renormalize the Schrödinger equation“, G. P. Lepage, nucl-th/9706029
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Fig. 4. Phase shifts calculated at LO in the modified Weinberg approach as functions of lab-
oratory energy in comparison with the Nijmegen [39] (filled circles) and Virginia Tech [40]
(open triangles) partial wave analyses. Left panel: S- and P-waves, right panel: D-waves
and the mixing angles ε1,2.

100 MeV. While the phase shift in the 3P2 channel quickly approaches the Λ →
∞ limit, the observed limit-cycle-like behavior of the 3P0 phase shift reflects the
non-uniqueness of solution of Eq. (8). While we still let the possibility open to fix
the solution from physical principles without the need to rely on the data, see the
discussion in Ref. [38], we follow here a more pragmatic approach of Ref. [37].
Specifically, we fix the solution in the 3P0 partial wave by including a counter term
of the form C3P0 p p′/Λ2 and tuning the LEC C3P0 to the Nijmegen partial wave
analysis (PWA). Notice that the residual Λ-dependence of C3P0 is of a logarithmic
type at any finite order in the loop expansion. Consequently, it is easy to see by
dimensional arguments that the iterations of this contact interaction do not require
the inclusion of higher-order counter terms. Therefore, the removed-cutoff limit is
indeed legitimate from the EFT point of view in this case, contrary to the situation
when positive powers of Λ appear in momentum-dependent counter terms [12]. A
more detailed analysis of this issue will be published elsewhere.

We are now in the position to discuss results for phase shifts. We employ the exact
isospin symmetry as appropriate at LO and use the following values for the LECs
entering the OPE potential

Mπ = 138 MeV, Fπ = 92.4 MeV, gA = 1.267 . (22)

The LECs CS , CT and C3P0 are fitted to Nijmegen 1S0, 3S1 and 3P0 phase shifts
at energies Elab < 25 MeV in the limit Λ → ∞. The resulting, cutoff-independent
predictions for phase shifts in S-, P - and D-waves and the mixing angles ε1,2 are
visualized in Fig. 4. Given that the calculations are carried out at LO, the agreement
with the Nijmegen PWA is rather good. The large deviation for the 1S0 phase shift

11

(i) non-renormalizability of 
    the LO equation is an arti-
    fact of the HB expansion

EE, Gegelia, PLB 716 (2012) 338

cutoff-independent results for phase shifts at LO 

(related work by Pavon Valderrama, van Kolck, Long, Yang, Soto, ...)

(ii) renormalizable LO eq. ba-
     sed on manifestly Lorentz 
     invariant  Lagrangian 

(iii) higher-order corrections
      (e.g. TPE) to be treated 
      perturbatively in progress...
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np cross section @ 50 MeV

Entem-Machleidt,  EE-Glöckle-Meißner

Long-range: parameter-free (all LECs from πN)
Short-range part: 24 LECs tuned to NN data
Accurate description of NN data up to ~ 200 MeV

Recent reviews:
    EE, Prog. Part Nucl. Phys. 57 (06) 654;  
    EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773; 
    Entem, Machleidt, Phys. Rept. 503 (11) 1;  
    EE, Meißner, arXiv:1201.2136, Ann. Rev. Nucl. Part. Sci. (in press) 



 The challenge: 
Understanding the 3N force

Todayʻs few- and many-body calculations have reached the level of accuracy at which 
it is absolutely necessary to include 3NF 

In spite of the decades of efforts, the (spin) structure of the 3NF is still poorely understood 
Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301 

Modeling (phenomenology) is difficult in particular due to the complicated structure of 3NF. 
E.g. 22 „structure functions“                         needed to parametrize only the static part:

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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 Leading chiral 3NF and 3N/4N continuum 

p-3He differential cross section Ay-puzzle in p-3He elastic scattering
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Fig. 5. p − 3He differential cross sections calculated with the I-N3LO (blue dashed line), the I-N3LO/N-N2LO (blue solid line), and
the AV18/UIX (thin green solid line) interaction models for three different incident proton energies. The experimental data are from
Refs. [34,35,36].
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Viviani et al., 
arXiv:1004.1306

Nd scattering: accurate description at low energy except for 
Ay-puzzle (fine tuned) and some breakup configurations

Uncertainty grows rapidly with energy (higher orders ?) 

4N continuum: an emerging field...
2 LECs tuned to few-N data

(e.g. 3H, 4He BEs)



 
Ab initio methods (NCSM, GFMC, CCM, Lattice, ...) + renormalization ideas (SRG, Vlow-k, UCOM) 
+ computational resources             precision ab initio nuclear structure calculations 

3

two 1+0 states is exchanged depending on cD. Using ex-
trapolation, we can see that the best overall description
is obtained around the cD ≈ −1. This observation is also
supported by excitation energy calculations as well as
by calculations of other transitions. We therefore select
cD = −1 and, from Fig. 1, cE = −0.346 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as
a function of Nmax for both the chiral NN+NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our
other p−shell nuclei.
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FIG. 4: States dominated by p-shell configurations for 10B,
11B, 12C, and 13C calculated at Nmax = 6 using !Ω = 15 MeV
(14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with
T=1 or 3/2. The excitation energy scales are in MeV.

We display in Fig. 4 the natural parity excitation spec-
tra of four nuclei in the middle of the p−shell with both
the NN and the NN+NNN effective interactions from
ChPT. The results shown are obtained in the largest
basis spaces achieved to date for these nuclei with the
NNN interactions, Nmax = 6 (6!Ω). Overall, the NNN
interaction contributes significantly to improve theory
in comparison with experiment. This is especially well-
demonstrated in the odd mass nuclei for the lowest few
excited states. The celebrated case of the ground state
spin of 10B and its sensitivity to the presence of the NNN
interaction is clearly evident. There is an initial indica-
tion in these spectra that the chiral NNN interaction is
“over-correcting” the inadequacies of the NN interaction
since, e.g. 1+0 and the 4+0 states in 12C are not only in-
terchanged but they are also spread apart more than the
experimentally observed separation. While these results
display a favorable trend with the addition of NNN in-
teraction, there is room for additional improvement and
we discuss the possibilities below.

These results required substantial computer resources.
A typical Nmax = 6 spectrum shown in Fig. 4 and a

set of additional experimental observables, takes 4 hours
on 3500 processors of the LLNL’s Thunder machine. We
present only an illustrative subset of our results here.

Table I contains selected experimental and theoretical
results for 6Li and A = 10 − 13. A total of 71 experi-
mental data are summarized in this table including the
excitation energies of 28 states encapsulated in the rms
energy deviations. Note that the only case of an increase
in the rms energy deviation with inclusion of NNN inter-
action is 13C and it arises due to the upward shift of the
7
2

−

state seen in Fig. 4, an indication of an overly strong
correction arising from the chiral NNN interaction. How-
ever, the experimental 7

2

−

may have significant intruder
components and is not well-matched with our state.

We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation of p-shell nuclei with chiral 2NF+3NF Navratil et al. ʼ07

sensitive to details of the 3NF 

still room for improvement and some open questions              higher-order 3NFs... 
many promising results (neutron-rich nuclei, long lifetime of 14C, neutron star radii, ...)

Leading chiral 3NF and nuclear structure

Barrett, Navratil, Nogga, Roth, Schwenk, Hebeler, Furnstahl, Vary, Ormand, ...
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�
+ 108g3Ac4 + 24gAc4

�

+ q22
�
5gAc4 − 1152π2ē17F
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2
πgA

� �
+

g2Ac4
384π2F 6

π

L(q2)
�
4M2

π + q22
�

1

includes terms

but NOT

(Δ-saturation of c3, c4)

1 1,5 2
-30

-20

-10

0 F1

2 2,5 3

-0,02

0
-30

-20

-10

0 F16

-0,02

-0,01

0

0,01

r12 = r23 = r31  [fm]

a b c d e f

EpelbaumFig05.pdf   1   4/5/12   1:41 PM

a b c d e f

EpelbaumFig05.pdf   1   4/5/12   1:41 PM

not converged at N3LO

rich operator structure 
(all Fiʻs nonzero)

parameter-free

Bernard, EE, Krebs ʼ08 ʼ11;  Gasparyan, Krebs, EE ʼ12



 Chiral 3NF: higher-order corrections

a b c d e f

EpelbaumFig05.pdf   1   4/5/12   1:41 PM

N2LO
N3LO
N4LO

-10

-5

0
F4

-0,08
-0,06
-0,04
-0,02
0

0
1
2
3
4
5

F6

0

0,01

0,02

0,03

0

50

100 F15

0

0,5

1

1,5

-60

-40

-20

0
F16

-0,6

-0,4

-0,2

0

0

50

100 F17

0

0,5

1

0

0,5

1 F18

0

0,002

0,004

1 1,5

r  [fm]

-25
-20
-15
-10

-5
0

F19

2 2,5 3
-0,25
-0,2
-0,15
-0,1
-0,05
0

0

10

20

30 F20

0

0,1
0,2
0,3

1 1,5

r  [fm]

-40
-30
-20
-10 F21

2 2,5 3
-0,4
-0,3
-0,2
-0,1

1 1,5

r  [fm]

-40
-30
-20
-10 F22

2 2,5 3
-0,4
-0,3
-0,2
-0,1

0

10

20 F4

0

0,01

0,02

-3

-1,5

0 F5

-0,006

-0,003

0

-0,6

-0,3

0
F6

-0,002

-0,001

0

-16

-8

0
F11

0

0,008

-8

-4

0

4

F12

-0,02

0

0

5

10 F13

0

0,01

0,02

0

5

10 F14

0

0,02

0,04

-50

-25

0
F15

-0,06

-0,03

0

-30

-20

-10

0 F16

-0,02

-0,01

0

0,01

1 1,5
r  [fm]

-30

-15

0 F17

2 2,5 3

-0,01

0

0,01

0

2

4

6
F19

0

0,004

0,008

1 1,5
r  [fm]

0

4

8 F21

2 2,5 3
0

0,008

0,016

1 1,5
r  [fm]

0

4

8 F22

2 2,5 3
0

0,008

0,016r12 = r23 = r31  [fm]

very good convergence of 
the chiral expansion

only 10 out of 22 Fiʻs...

all LECs determined in πN

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6

∼ 1
m∆−mN

(1)

V3N =
22�

i=1

Gi Fi(r12, r23, r31) + perm. (2)

c3 ∼ −5 GeV−1

L = 11.8 fm

V2π =
�σ1 · �q1 �σ3 · �q3

[q21 +M2
π ] [q

2
3 +M2

π ]

�
τ 1 · τ 3 A(q2) + τ 1 × τ 3 · τ 2 �q1 × �q3 · �σ2 B(q2)

�

A(3)(q2) =
g2A
8F 4

π

�
(2c3 − 4c1)M

2
π + c3q

2
2

�
, B(3)(q2) =

g2Ac4
8F 4

π

,

A(4)(q2) =
g4A

256πF 6
π

�
A(q2)

�
2M4

π + 5M2
πq

2
2 + 2q42

�
+

�
4g2A + 1

�
M3

π + 2
�
g2A + 1

�
Mπq

2
2

�
,

B(4)(q2) = − g4A
256πF 6

π

�
A(q2)

�
4M2

π + q22
�
+ (2g2A + 1)Mπ

�

A(5)(q2) =
gA

4608π2F 6
π

�
M2

πq
2
2(F

2
π

�
2304π2gA(4ē14 + 2ē19 − ē22 − ē36)− 2304π2d̄18c3

�

+ gA(144c1 − 53c2 − 90c3)) +M4
π

�
F 2
π

�
4608π2d̄18(2c1 − c3) + 4608π2gA(2ē14 + 2ē19 − ē36 − 4ē38)
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 Pion-deuteron scattering

Figure 6: Combined constraints in the ã+–a− plane from data on the width and energy shift of πH, as well as the πD
energy shift. Figure from [1].

corrections, cf. diagrams (d9) and (d10), although formally they contribute only at O(e2p2) in the
power counting. The explicit computation of these diagrams showed that the magnitude of these
corrections is far beyond the accuracy we seek.

The three pieces astr, adisp+∆, and aEM, when added together, constitute the three-body con-
tribution to the π−d scattering length. In fact, to a large extent, the novel three-body effects
computed in this study accidentally cancel

∆a(2) + astaticNLO + a
cut
+ aEM = (0.1 ± 0.7) · 10−3M−1π . (7.4)

This cancellation is, in itself, somewhat remarkable, since, e.g. astaticNLO is ∼ 35 times larger than
the final central value. The effect of the cancellation is that the main impact of our analysis on
the extraction of pion–nucleon scattering lengths is our consideration of NLO isospin-breaking
corrections—in particular the large shift ∆ã+ = (−3.3±0.3)·10−3M−1π —in the πN amplitude [71].

8. Pion–nucleon scattering lengths

Combining the dependence of the π−d scattering length on ã+ and a− and the results for πH
discussed above, we find the constraints depicted in Fig. 6. The combined 1σ error ellipse yields

ã+ = (1.9 ± 0.8) · 10−3M−1π , a− = (86.1 ± 0.9) · 10−3M−1π , (8.1)

with a correlation coefficient ρa− ã+ = −0.21. We find that the inclusion of the πD energy shift
reduces the uncertainty of ã+ by more than a factor of 2 and the correlation between ã+ and a−
by more than a factor of 3. Note that in the case of the πH level shift the width of the band is
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Pion-nucleon amplitude at threshold (in the isospin limit):

Weinberg;  Beane, Bernard, Lee, Meißner, EE, Phillips;  
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Recent data on hadronic atoms: 

which were essential to confirm the role of the quark condensate as the leading order parameter
in the spontaneous breaking of chiral symmetry [6].

In the case of pion–nucleon scattering, chiral symmetry predicts that the isoscalar scattering
length a+ is suppressed compared to its isovector counterpart a−. In particular, the low-energy
theorem for a− [4, 7]

a− =
Mπ

8π(1 + Mπ/mp)F2π
+ O(M3

π) ≈ 80 · 10−3M−1π (1.2)

receives corrections only at third order in the pion mass and its prediction is numerically very
close to the full result. Meanwhile, the expansion of the isoscalar scattering length [7]

a+ = 0 +
M2
π

4π(1 + Mπ/mp)F2π

{

−
g2A
4mp
+ 2(c2 + c3 − 2c1)

}

+ O(M3
π) ≈ 0, (1.3)

with the pion decay constant Fπ, the axial charge of the nucleon gA, and low-energy constants
(LECs) ci, stands in marked contrast: the leading order vanishes—leaving a+ as a measure of
the explicit breaking of chiral symmetry—and at sub-leading orders poorly determined LECs
and huge cancellations between individual terms limit the predictive power of the expansion.
Experimentally, lack of π0 beams and neutron targets makes direct pion–nucleon scattering ex-
periments impossible in some charge channels, complicating a measurement of a+. In the isospin
limit the π0p scattering length is purely isoscalar, and corrections to the isospin limit are well-
controlled for this quantity. The best hope for access to a+ in the πN sector therefore lies in
precision measurements of threshold neutral-pion photoproduction [8, 9]. But, until the advent
of such measurements, extractions of a+ from πN scattering data suffer from large uncertain-
ties. Different phase-shift analyses yield values covering a wide range from −10 · 10−3M−1π to
+5 · 10−3M−1π [10]. Indeed, the combination of data and theory has, until now, lacked sufficient
accuracy to even establish definitively that a+ ! 0.

A precise determination of πN scattering lengths improves our knowledge in many areas;
two particularly important examples of this are the following. First, a+ is one of several inputs
to dispersive analyses of the pion–nucleon σ-term [11], which measures the explicit chiral sym-
metry breaking in the nucleon mass due to up and down quark masses, and is, in turn, connected
to the strangeness content of the nucleon. Second, a− serves as a vital input to a determina-
tion of the pion–nucleon coupling constant via the Goldberger–Miyazawa–Oehme (GMO) sum
rule [12]. While the uncertainty in a− is much smaller than that in a+, it still contributes signif-
icantly to the overall error bar on the sum-rule evaluation [13, 14]. This latter example is thus
one of several where data on pion–nucleon scattering affects more complicated systems like the
nucleon–nucleon (NN) interaction, and hence has an impact on nuclear physics.

In view of the difficulties concerning both direct experimental access and the convergence of
its chiral expansion (1.3), data on hadronic atoms have become the primary source of information
on a+ [15]. In these systems, the strong interaction modifies the spectrum compared to pure QED
by shifting the energy levels and introducing a finite width to the states. Both effects are sensitive
to threshold pion–nucleon scattering. In this way, new information on pion–nucleon scattering
lengths has become available due to recent high-accuracymeasurements of pionic hydrogen (πH)
and pionic deuterium (πD). In the case of πH, the latest experimental results [16] are

ε1s = (−7.120± 0.012) eV, Γ1s = (0.823 ± 0.019) eV, (1.4)

for the (attractive) shift of the 1s level of πH due to strong interactions and its width. The shift
of the ground state is related to the π−p scattering length aπ−p, while the width gives access to

2

πH: possible, and a combined analysis of the data (1.4) on πH and the recently remeasured level shift
in πD [22]

εD1s = (2.356 ± 0.031) eV (1.12)

then yields the determination of a+ and a− of unprecedented accuracy in [1]. (The width of πD
is governed by π−d → nn (BR = 73.9%) and π−d → nnγ (BR = 26.1%) [23], such that no
additional information on threshold πN physics is provided.) The main purpose of this paper is
to provide the details of the calculation of the three-body part of aπ−d, which we decompose as

a(3)
π−d = a

str
+ adisp+∆ + aEM, (1.13)

where adisp+∆ involves two-nucleon or ∆-isobar intermediate states, aEM represents virtual-photon
corrections, and astr denotes “strong” diagrams, i.e. essentially all other contributions in the chiral
expansion (the definition of each class of diagrams can be found in Sects. 4–6).

The paper is organized as follows: we first briefly review isospin-violating corrections to the
πN scattering lengths in Sect. 2. Then, we summarize the hierarchy of diagrams contributing to
a(3)
π−d in both the isospin-conserving and the isospin-violating sector in Sect. 3, before discussing
strong, virtual-photon, and dispersive +∆ contributions in detail in Sects. 4, 5, and 6. A reader
not interested in the details of the calculation may skip Sects. 4–6 and proceed to Sect. 7, where
we summarize our main conclusions concerning three-body contributions to the π−d scattering
length. The consequences for the πN scattering lengths and the πNN coupling constant are
presented in Sects. 8 and 9. We conclude in Sect. 10. Various details of the calculation are
provided in the appendices.

2. Isospin violation in the πN scattering lengths

Before turning to the calculation of a(3)
π−d, we review isospin-violating corrections to the πN

scattering lengths, which provide an essential input to the present analysis. The scattering lengths
in the isospin limit for all eight channels can be written in terms of a+ and a− as

aπ−p ≡ aπ−p→π− p = aπ+n ≡ aπ+n→π+n = a+ + a−,
aπ+p ≡ aπ+p→π+ p = aπ−n ≡ aπ−n→π−n = a+ − a−,

acexπ−p ≡ aπ−p→π0n = a
cex
π+n ≡ aπ+n→π0 p = −

√
2 a−,

aπ0p ≡ aπ0p→π0 p = aπ0n ≡ aπ0n→π0n = a+. (2.1)

To extract a+ and a− from hadronic-atom data, we need to relate the scattering lengths in partic-
ular charge channels to those in the isospin limit, i.e. we need the corrections

∆aπ−p = aπ−p − (a+ + a−), ∆aπ−n = aπ−n − (a+ − a−), ∆acexπ−p = a
cex
π−p +

√
2 a−. (2.2)

These corrections are generated by the quark mass difference md − mu and electromagnetic in-
teractions. They can be calculated systematically in ChPT, and have been worked out at next-to-
leading order (NLO) in the chiral expansion in [24–26].

In those works, and throughout this study, the counting md − mu ∼ e2 is used, i.e. electro-
magnetic and quark-mass effects are assumed to contribute at the same order. This counting is
phenomenologically rather successful. The prime example is the nucleon mass difference, to
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GFMC results for magnetic moments of light nuclei with chiral MECs
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FIGURE 2. Left: Magnetic moments in nuclear magnetons for A ≤ 9 nuclei. Black stars indicate the
experimental values [20, 21], while blue dots (red diamonds) represent preliminary GFMC calculations
which include the LO one-body EM current (full "EFT current up to N3LO). Predictions are for nuclei
with A> 3. Right: Transition widths normalized to the experimental values [20, 21] for A= 7–8 nuclei,
notation as in left panel.

thus reducing the number of unknown LECs to three. We fix the two isoscalar LECs
so as to reproduce the deuteron and the isoscalar combination of the trinucleon m.m.’s,
while the isovector LEC is obtained from fits to the isovector combination of the A= 3
nuclei m.m.’s. This choice provides us with the most natural LECs [17].

RESULTS

The preliminary results for the m.m.’s of A≤ 9 nuclei are summarized in the left panel
of Fig. 2. In this figure, black stars represent the experimental data [20, 21]—there are
no data for the m.m. of 9B. For completeness, we show also the experimental values for
the proton and neutron m.m.’s, as well as their sum, which corresponds to the m.m. of
an S-wave deuteron. The experimental values of the A= 2–3 m.m.’s have been utilized
to fix the LECs, therefore predictions are for A > 3 nuclei. The blue dots labeled as
GFMC(LO) represent theoretical predictions obtained with the standard one-nucleon
EM current entering at LO—diagram a) of Fig. 1. The GFMC(LO) results reproduce
the bulk properties of the m.m.’s of the light nuclei considered here. In particular, we
can recognize three classes of nuclei, that is nuclei whose m.m.’s are driven by an
unpaired valence proton, or neutron, or ‘deuteron cluster’ inside the nucleus. Predictions
which include all the contributions to the N3LO "EFT EM currents illustrated in Fig. 1
are represented by the red diamonds of Fig. 2, labeled GFMC(FULL). In most of the
cases considered here, the predicted m.m.’s are closer to the experimental data when
the corrections entering at NLO and following orders are added to the LO one-body
EM operator. Notable are the cases associated with the A = 9 and T = 3/2 nuclei, in
which these corrections are found to provide up to ∼ 40% of the total predictions. We
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thus reducing the number of unknown LECs to three. We fix the two isoscalar LECs
so as to reproduce the deuteron and the isoscalar combination of the trinucleon m.m.’s,
while the isovector LEC is obtained from fits to the isovector combination of the A= 3
nuclei m.m.’s. This choice provides us with the most natural LECs [17].

RESULTS

The preliminary results for the m.m.’s of A≤ 9 nuclei are summarized in the left panel
of Fig. 2. In this figure, black stars represent the experimental data [20, 21]—there are
no data for the m.m. of 9B. For completeness, we show also the experimental values for
the proton and neutron m.m.’s, as well as their sum, which corresponds to the m.m. of
an S-wave deuteron. The experimental values of the A= 2–3 m.m.’s have been utilized
to fix the LECs, therefore predictions are for A > 3 nuclei. The blue dots labeled as
GFMC(LO) represent theoretical predictions obtained with the standard one-nucleon
EM current entering at LO—diagram a) of Fig. 1. The GFMC(LO) results reproduce
the bulk properties of the m.m.’s of the light nuclei considered here. In particular, we
can recognize three classes of nuclei, that is nuclei whose m.m.’s are driven by an
unpaired valence proton, or neutron, or ‘deuteron cluster’ inside the nucleus. Predictions
which include all the contributions to the N3LO "EFT EM currents illustrated in Fig. 1
are represented by the red diamonds of Fig. 2, labeled GFMC(FULL). In most of the
cases considered here, the predicted m.m.’s are closer to the experimental data when
the corrections entering at NLO and following orders are added to the LO one-body
EM operator. Notable are the cases associated with the A = 9 and T = 3/2 nuclei, in
which these corrections are found to provide up to ∼ 40% of the total predictions. We
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 Calculation strategy 
Simulation based on LO action (1π + LO contacts), higher orders perturbatively 

Eucl.-time propagation of A nucleons        transition amplitude ZLO(t) = �Ψ(t�)| (MLO)
Lt |Ψ(t�)�

1

ground- (and excited-) state energies                                                

MLO =: exp (−HLOαt) :

1

exp
�
−ELO

0
αt

�
= lim

t→∞
Z(t+ αt)/Z(t)

1

Auxiliary-field formulation: nucleons propagating in the background of (instantaneous) pion 
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 Ground states of 8Be and 12C
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Simulations for 8Be and 12C, L=11.8 fm

Ground state energies (L=11.8 fm) of 4He, 8Be, 12C & 16O
4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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 Structure of the Hoyle state
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2

tice spacing a = 1.97 fm and total length L = 12 fm. In
the time direction, we use lattice time step at = 1.32 fm
and vary the propagation time Lt to extrapolate to the
limit Lt → ∞. The nucleons are treated as point-like
particles on lattice sites, and interactions due to the ex-
change of pions and multi-nucleon operators are gener-
ated using auxiliary fields. Lattice effective field theory
was originally used to calculate the many-body proper-
ties of homogeneous nuclear and neutron matter [19, 20].
Since then the properties of several atomic nuclei have
been investigated [21, 22]. A recent review of the liter-
ature can be found in Ref. [23].

Euclidean time propagation is used to project on to
low-energy states of our interacting system. Let H be
the Hamiltonian. For any initial quantum state Ψ, the
projection amplitude is defined as the expectation value�
e
−Ht

�
Ψ
. For large Euclidean time t, the exponential

operator e
−Ht enhances the signal of low-energy states.

Energies can be determined from the exponential decay
of these projection amplitudes. The first few time steps
and last few time steps are evaluated using a simpler
Hamiltonian HSU(4) based upon Wigner’s SU(4) symme-
try for protons and neutrons [24]. This Hamiltonian is
computationally inexpensive and is used as a low-energy
filter before starting the main calculation. This tech-
nique is described in Ref. [23].

In Table I we present lattice results for the ground
state energies of 4He and 8Be up to NNLO. The method
of calculation is nearly the same as that described in
Ref. [13, 22, 25]. The higher-order corrections are com-
puted using perturbation theory. The coefficients of
the nucleon-nucleon interactions are set by fitting to low-
energy scattering data. In our calculations the NNLO
corrections correspond with three-nucleon forces. A de-
tailed description of the interactions at each order can
be found in Ref. [25]. We have used the triton binding
energy and the weak axial vector current to fix the low-
energy constants cD and cE entering the three-nucleon
interaction.

In comparison with the calculations in Ref. [13], some
improvements have been made using higher-derivative
lattice operators which eliminate the overbinding of the
leading order action when calculating larger nuclei such
as 16O. The details of this improved action will be dis-
cussed in a forthcoming publication. The error bars in
Table I are one standard deviation estimates which in-
clude both Monte Carlo statistical errors and uncertain-
ties due to extrapolation at large Euclidean time. We
see that the binding energy results for 4He and 8Be at
NNLO are in agreement with experimental values.

In our projection Monte Carlo calculations we use a
larger class of initial and final states than considered in
previous work. For the calculation of 4He we use an
initial state with four nucleons, each at zero momentum.
For the calculation of 8Be we use the same initial state
as 4He, but then apply creation operators after the first

TABLE I: Lattice results and experimental values for the
ground state energies of 4He and 8Be. All energies are in
units of MeV.

4He 8Be

LO [O(Q0)] −28.0(3) −57(2)

NLO [O(Q2)] −24.9(5) −47(2)

NNLO [O(Q3)] −28.3(6) −55(2)

Experiment −28.30 −56.50
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FIG. 1: Lattice results for the 12C spectrum at leading order.
In Panel I we show results from three different initial states, A,
B, and ∆, each approaching the ground state energy. In Panel
II we show results starting from three other initial states, C,
D, and Λ. These trace out an intermediate plateau at energy
about 7 MeV above the ground state.

time step to inject four more nucleons at zero momentum.
The analogous process is done to extract four nucleons
before the last step. This injection and extraction pro-
cess of nucleons at zero momentum helps to eliminate
directional biases caused by initial and final state mo-
menta.

We make use of many different initial and final states
to probe the structure of the 12C states. In all of the 12C
states investigated here we measure four-nucleon correla-
tions by calculating the expectation value of ρ4, where ρ
is the total nucleon density. We find strong four-nucleon
correlations consistent with the formation of alpha clus-
ters. In Fig. 1 we present lattice results for the energy
of 12C at leading order versus Euclidean projection time
t. For each of the initial states A, B, C, and D, we
start with delocalized nucleon standing waves and use a
strong attractive interaction in HSU(4) to allow the nu-
cleons to self-organize into a nucleus. For initial states
∆ and Λ, we use alpha cluster wavefunctions to recover
the same states found using initial states A, B, C, and D.
For these calculations, the interaction in HSU(4) is not as
strong and the projected states retain their original alpha
cluster character.

In Panel I, we show results from three different initial
states, A, B, and ∆, each approaching the ground state

3

FIG. 2: This shows initial state ∆, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a compact triangle. There are a total of 12

equivalent orientations of this configuration.

energy, −96(2) MeV. For initial state A, we start with
four nucleons each at zero momentum, apply creation
operators after the first time step to inject four more
nucleons at rest, and then inject four more nucleons at
rest after the second time step. The reverse process
is used to extract nucleons for final state A. The same
scheme is used for initial state B, though the interactions
in HSU(4) used are not as strongly attractive as those for
A.

For initial state ∆, we use a wavefunction consisting
of three alpha clusters as shown in Fig. 2. The alpha
clusters are formed by Gaussian packets centered on the
vertices of a compact triangle. In order to construct
eigenstates of total momentum and lattice cubic rota-
tions, we consider all possible translations and rotations
of the initial state. There are a total of 12 equivalent
orientations of this configuration. We do not find fast
convergence to the ground state when starting from any
other configuration of alpha clusters. From this we con-
clude that the alpha cluster configurations in Fig. 2 have
the strongest overlap with the 0+

1 ground state of 12C.
The fact that it is an isosceles right triangle rather than
an equilateral triangle is just an artifact of the lattice
spacing.

In Panel II of Fig. 1 we show leading-order energies
for three different initial states, C, D, and Λ, each ap-
proaching an intermediate plateau at −89(2) MeV. If
Euclidean time is taken to infinity, these curves eventu-
ally approach the ground state energy like the curves in
Panel I. However it is clear that a different state is first
being formed which is not the ground state. We identify
the 0+ state in this plateau region as the 0+

2 Hoyle state.
The common thread connecting each of the initial states
C, D, and Λ, is that each produces a state which has an
extended or prolate geometry. This is in contrast to the
oblate triangular configuration in Fig. 2.

For initial state C, we take four nucleons at rest, four
with momenta (2π/L, 2π/L, 2π/L), and four with mo-
menta (−2π/L,−2π/L,−2π/L). For initial state D,
we use a similar configuration with four at rest, four
with momenta (2π/L, 2π/L, 0), and four with momenta
(−2π/L,−2π/L, 0). For initial state Λ, we use a set
three alpha clusters formed by Gaussian packets centered
on the vertices of a bent-arm or obtuse triangular con-

FIG. 3: This shows initial state Λ, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a bent-arm or obtuse triangular configura-

tion. There are a total of 24 equivalent orientations of this

configuration.

TABLE II: Lattice results for the low-lying even-parity states

of
12

C compared with the experimental results in units of

MeV.

0
+
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+
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+
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+
2 (E

+
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LO [O(Q
0
)] −96(2) −94(2) −89(2) −88(2)

NLO [O(Q
2
)] −77(3) −74(3) −72(3) −70(3)

NNLO [O(Q
3
)] −92(3) −89(3) −85(3) −83(3)

Experiment −92.16 −87.72 −84.51

−82.6(1) [8, 10]

−82.32(6) [11]

−81.1(3) [9]

figuration as shown in Fig. 3. There are a total of 24
equivalent orientations of this configuration. We do not
find the same plateau starting from other configurations
of alpha clusters. We conclude that the configurations
in Fig. 3 have the strongest overlap with the 0+

2 Hoyle
state of 12C.

We use the same multi-channel method developed in
Ref. [13] to find a spin-2 excitation above the ground state
as well as a spin-2 excitation above the Hoyle state. In
both cases we are taking the E

+ representation of the cu-
bic rotation group on the lattice. We show the results for
the binding energies of the low-lying even-parity states of
12C in Table II. We find that the binding energies at
NNLO are in agreement with experimental values.

In Table III we present results at leading order for the
root-mean-square charge radius and quadrupole moment
of the even-parity states of 12C. We also show experi-
mental values where available. In this study we compute
electromagnetic moments only at leading order. We note
that moments such as the charge radius for resonances
above threshold are dependent on boundary conditions
used to regulate the continuum-state asymptotics of the
wavefunction. We avoid this problem because all of the
low-lying states are bound at leading order. One expects
that as the higher-order corrections push the binding en-
ergies closer to the triple alpha threshold, the correspond-
ing radii will increase accordingly. A detailed study of
these resonances as a function of finite volume size will
be investigated in future work. We find good agreement
with the experimental value for the 2+

1 quadrupole mo-
ment. The difference in signs for the electric quadrupole

3

FIG. 2: This shows initial state ∆, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a compact triangle. There are a total of 12

equivalent orientations of this configuration.

energy, −96(2) MeV. For initial state A, we start with
four nucleons each at zero momentum, apply creation
operators after the first time step to inject four more
nucleons at rest, and then inject four more nucleons at
rest after the second time step. The reverse process
is used to extract nucleons for final state A. The same
scheme is used for initial state B, though the interactions
in HSU(4) used are not as strongly attractive as those for
A.

For initial state ∆, we use a wavefunction consisting
of three alpha clusters as shown in Fig. 2. The alpha
clusters are formed by Gaussian packets centered on the
vertices of a compact triangle. In order to construct
eigenstates of total momentum and lattice cubic rota-
tions, we consider all possible translations and rotations
of the initial state. There are a total of 12 equivalent
orientations of this configuration. We do not find fast
convergence to the ground state when starting from any
other configuration of alpha clusters. From this we con-
clude that the alpha cluster configurations in Fig. 2 have
the strongest overlap with the 0+

1 ground state of 12C.
The fact that it is an isosceles right triangle rather than
an equilateral triangle is just an artifact of the lattice
spacing.

In Panel II of Fig. 1 we show leading-order energies
for three different initial states, C, D, and Λ, each ap-
proaching an intermediate plateau at −89(2) MeV. If
Euclidean time is taken to infinity, these curves eventu-
ally approach the ground state energy like the curves in
Panel I. However it is clear that a different state is first
being formed which is not the ground state. We identify
the 0+ state in this plateau region as the 0+

2 Hoyle state.
The common thread connecting each of the initial states
C, D, and Λ, is that each produces a state which has an
extended or prolate geometry. This is in contrast to the
oblate triangular configuration in Fig. 2.

For initial state C, we take four nucleons at rest, four
with momenta (2π/L, 2π/L, 2π/L), and four with mo-
menta (−2π/L,−2π/L,−2π/L). For initial state D,
we use a similar configuration with four at rest, four
with momenta (2π/L, 2π/L, 0), and four with momenta
(−2π/L,−2π/L, 0). For initial state Λ, we use a set
three alpha clusters formed by Gaussian packets centered
on the vertices of a bent-arm or obtuse triangular con-

FIG. 3: This shows initial state Λ, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a bent-arm or obtuse triangular configura-

tion. There are a total of 24 equivalent orientations of this

configuration.
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3
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Experiment −92.16 −87.72 −84.51

−82.6(1) [8, 10]
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figuration as shown in Fig. 3. There are a total of 24
equivalent orientations of this configuration. We do not
find the same plateau starting from other configurations
of alpha clusters. We conclude that the configurations
in Fig. 3 have the strongest overlap with the 0+

2 Hoyle
state of 12C.

We use the same multi-channel method developed in
Ref. [13] to find a spin-2 excitation above the ground state
as well as a spin-2 excitation above the Hoyle state. In
both cases we are taking the E

+ representation of the cu-
bic rotation group on the lattice. We show the results for
the binding energies of the low-lying even-parity states of
12C in Table II. We find that the binding energies at
NNLO are in agreement with experimental values.

In Table III we present results at leading order for the
root-mean-square charge radius and quadrupole moment
of the even-parity states of 12C. We also show experi-
mental values where available. In this study we compute
electromagnetic moments only at leading order. We note
that moments such as the charge radius for resonances
above threshold are dependent on boundary conditions
used to regulate the continuum-state asymptotics of the
wavefunction. We avoid this problem because all of the
low-lying states are bound at leading order. One expects
that as the higher-order corrections push the binding en-
ergies closer to the triple alpha threshold, the correspond-
ing radii will increase accordingly. A detailed study of
these resonances as a function of finite volume size will
be investigated in future work. We find good agreement
with the experimental value for the 2+

1 quadrupole mo-
ment. The difference in signs for the electric quadrupole
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tice spacing a = 1.97 fm and total length L = 12 fm. In
the time direction, we use lattice time step at = 1.32 fm
and vary the propagation time Lt to extrapolate to the
limit Lt → ∞. The nucleons are treated as point-like
particles on lattice sites, and interactions due to the ex-
change of pions and multi-nucleon operators are gener-
ated using auxiliary fields. Lattice effective field theory
was originally used to calculate the many-body proper-
ties of homogeneous nuclear and neutron matter [19, 20].
Since then the properties of several atomic nuclei have
been investigated [21, 22]. A recent review of the liter-
ature can be found in Ref. [23].

Euclidean time propagation is used to project on to
low-energy states of our interacting system. Let H be
the Hamiltonian. For any initial quantum state Ψ, the
projection amplitude is defined as the expectation value�
e
−Ht

�
Ψ
. For large Euclidean time t, the exponential

operator e
−Ht enhances the signal of low-energy states.

Energies can be determined from the exponential decay
of these projection amplitudes. The first few time steps
and last few time steps are evaluated using a simpler
Hamiltonian HSU(4) based upon Wigner’s SU(4) symme-
try for protons and neutrons [24]. This Hamiltonian is
computationally inexpensive and is used as a low-energy
filter before starting the main calculation. This tech-
nique is described in Ref. [23].

In Table I we present lattice results for the ground
state energies of 4He and 8Be up to NNLO. The method
of calculation is nearly the same as that described in
Ref. [13, 22, 25]. The higher-order corrections are com-
puted using perturbation theory. The coefficients of
the nucleon-nucleon interactions are set by fitting to low-
energy scattering data. In our calculations the NNLO
corrections correspond with three-nucleon forces. A de-
tailed description of the interactions at each order can
be found in Ref. [25]. We have used the triton binding
energy and the weak axial vector current to fix the low-
energy constants cD and cE entering the three-nucleon
interaction.

In comparison with the calculations in Ref. [13], some
improvements have been made using higher-derivative
lattice operators which eliminate the overbinding of the
leading order action when calculating larger nuclei such
as 16O. The details of this improved action will be dis-
cussed in a forthcoming publication. The error bars in
Table I are one standard deviation estimates which in-
clude both Monte Carlo statistical errors and uncertain-
ties due to extrapolation at large Euclidean time. We
see that the binding energy results for 4He and 8Be at
NNLO are in agreement with experimental values.

In our projection Monte Carlo calculations we use a
larger class of initial and final states than considered in
previous work. For the calculation of 4He we use an
initial state with four nucleons, each at zero momentum.
For the calculation of 8Be we use the same initial state
as 4He, but then apply creation operators after the first

TABLE I: Lattice results and experimental values for the
ground state energies of 4He and 8Be. All energies are in
units of MeV.

4He 8Be

LO [O(Q0)] −28.0(3) −57(2)

NLO [O(Q2)] −24.9(5) −47(2)

NNLO [O(Q3)] −28.3(6) −55(2)

Experiment −28.30 −56.50
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FIG. 1: Lattice results for the 12C spectrum at leading order.
In Panel I we show results from three different initial states, A,
B, and ∆, each approaching the ground state energy. In Panel
II we show results starting from three other initial states, C,
D, and Λ. These trace out an intermediate plateau at energy
about 7 MeV above the ground state.

time step to inject four more nucleons at zero momentum.
The analogous process is done to extract four nucleons
before the last step. This injection and extraction pro-
cess of nucleons at zero momentum helps to eliminate
directional biases caused by initial and final state mo-
menta.

We make use of many different initial and final states
to probe the structure of the 12C states. In all of the 12C
states investigated here we measure four-nucleon correla-
tions by calculating the expectation value of ρ4, where ρ
is the total nucleon density. We find strong four-nucleon
correlations consistent with the formation of alpha clus-
ters. In Fig. 1 we present lattice results for the energy
of 12C at leading order versus Euclidean projection time
t. For each of the initial states A, B, C, and D, we
start with delocalized nucleon standing waves and use a
strong attractive interaction in HSU(4) to allow the nu-
cleons to self-organize into a nucleus. For initial states
∆ and Λ, we use alpha cluster wavefunctions to recover
the same states found using initial states A, B, C, and D.
For these calculations, the interaction in HSU(4) is not as
strong and the projected states retain their original alpha
cluster character.

In Panel I, we show results from three different initial
states, A, B, and ∆, each approaching the ground state

Probing (α-cluster) structure of the 01+, 02+ states



 Summary and outlook
Nuclear chiral dynamics enters precision era:
low-energy NN scattering is accurately described at N3LO

many high-precision few-N studies: pion-N scatt. lengths, Compton scattering, 
pion photoproduction, FFs, radiative/muon capture...

Nuclear lattice simulations:
combining EFT and lattice simulations           access to (light) nuclei 
exciting results for the 12C spectrum, first ab initio calculation of the Hoyle state
Work in progress: quark mass dependence of the Hoyle state, spectrum of 16O,
                             volume dependence, reactions ...

impressive progress in ab initio many-body methods, precise nuclear structure 
calculations for light nuclei become reality! 

(higher-order corrections in progress)
The main source of uncertainty is presently due to the 3NF...


