A renormalizable approach to NN scattering with nonperturbative pions

in collaboration with Jambul Gegelia, based on arXiv:1207.2420

Outline

- Introduction
- two nucleons at very low energies (pionless EFT)
- inclusion of pions: KSW vs Weinberg
- Two nucleons without the NR expansion
- perturbative pions: recovering KSW at NLO
- nonperturbative pions at LO
- Summary \& outlook

Pion-less EFT for two-nucleon scattering

Effective Lagrangian (Heavy Baryon): for $Q \ll M_{\pi}$ only zero-range interactions

$$
\mathcal{L}_{\text {eff }}=N^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}\right) N-\frac{1}{2} C_{1}^{0}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{2}^{0}\left(N^{\dagger} \vec{\sigma} N\right)^{2}-\frac{1}{4} C_{1}^{2}\left(N^{\dagger} \vec{\nabla}^{2} N\right)\left(N^{\dagger} N\right)+\text { h.c. }+\ldots
$$

Goal: $\mathrm{E}(\mathrm{F}) \mathrm{T}$ for NN scattering at typical CMS momenta * $\sqrt{m_{N} E_{B}} \ll Q \ll M_{\pi}$

[^0]
Pionless EFT: natural scattering length

Scattering amplitude (S-waves):

$$
\begin{aligned}
S=e^{2 i \delta} & =1-i\left(\frac{k m}{2 \pi}\right) T \\
T & =-\frac{4 \pi}{m} \frac{1}{k \cot \delta-i k}=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}
\end{aligned}
$$

- Natural case

$$
|a| \sim M_{\pi}^{-1},|r| \sim M_{\pi}^{-1}, \ldots \rightarrow T=T_{0}+T_{1}+T_{2}+\ldots=\frac{4 \pi a}{m}[1-i a k+\underset{\uparrow}{1} \underset{\sim \mathrm{Q}^{0} \sim \sim \mathrm{Q}^{1}}{(\underbrace{\left(\frac{a r_{0}}{2}-a^{2}\right)}_{\sim \mathrm{Q}^{2}} k^{2}}+\ldots]
$$

$$
T_{0}=
$$

EFT expansion based on NDA for C^{i}, i. e. $C^{i} \sim Q^{0}$, reproduces the ERE for T.

Pionless EFV: large scattering length

In reality: $\quad a^{1} S_{0}=-23.741 \mathrm{fm}=-16.6 M_{\pi}^{-1} \quad a^{a} S_{1}=5.42 \mathrm{fm}=3.8 M_{\pi}^{-1}$
Large scatt. length \longrightarrow shallow (virtual) bound state \longrightarrow need to resum certain graphs (fine tuning beyond NDA...)

- KSW approach for the case $|a| \gg M_{\pi}^{-1} \quad$ Kaplan, Savage \& Wise '97

Keep $a k$ fixed, count $a \sim Q^{-1}$:

$$
T=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}=\frac{4 \pi}{m} \frac{1}{(1+i a k)}[\underset{\sim Q^{-1}}{a+\underbrace{\frac{a r_{0}}{2\left(a^{-1}+i k\right)}}_{\sim Q^{0}} k^{2}}+\underset{\sim Q^{1}}{\ldots}] .
$$

DR + Power Divergence Subtraction: $C^{0} \sim 1 / Q, C^{2} \sim 1 / Q^{2}, \ldots$

Equivalent approaches (modulo higher-order terms)

- NDA for C^{i} but $m \sim 1 / Q$

Weinberg

- EFT with dibaryon fields: NDA for C^{i} and $m \sim Q^{0}$ Tarrus Castella, Soto

Chiral EFT
 for two-nucleon scattering

Goal: EFT for NN scattering at typical CMS momenta $Q \sim M_{\pi}$

KSW: treat pion exchange in perturbation theory: straightforward, consistent, but poor convergence...

Weinberg: both LO contact terms \& OPEP must be resummed:

phenomenologically successful but renormalization rather intransparent...

KSW approach (perturbative pions)

Low Energy Theorems at NLO Cohen, Hansen'99

$$
k \cot \delta=-a^{-1}+\frac{1}{2} r k^{2}+v_{2} h^{4}+v_{3} h^{6}+v_{4} k^{8}+\ldots
$$

$$
\begin{aligned}
& v_{2}=\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(-\frac{16}{3 a^{2} M_{\pi}^{4}}+\frac{32}{5 a M_{\pi}^{3}}-\frac{2}{M_{\pi}^{2}}\right) \\
& v_{3}=\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(-\frac{16}{3 a^{2} M_{\pi}^{6}}-\frac{128}{7 a M_{\pi}^{5}}+\frac{16}{3 M_{\pi}^{4}}\right)
\end{aligned}
$$

	$v_{2}\left(\mathrm{fm}^{3}\right)$	$v_{3}\left(\mathrm{fm}^{5}\right)$	$v_{4}\left(\mathrm{fm}^{7}\right)$	$v_{2}\left(\mathrm{fm}^{3}\right)$	$v_{3}\left(\mathrm{fm}^{5}\right)$	$v_{4}\left(\mathrm{fm}^{7}\right)$
theory	-3.3	17.8	-108.	-0.95	4.6	-25.
NPWA	-0.5	3.8	-17.	0.04	0.7	-4.0
spin-singlet						

Higher-order calculations also show problems in $\mathrm{S}=1$ channels
Mehen, Stewart '00
\Rightarrow it seems necessary to treat pions non-perturbatively at $p \sim M_{\pi}$ see, however, Beane, Kaplan, Vuorinen, arXiv:0812.3938...

Non-perturbative pions: Weinberg's approach

Perturbation theory fails due to infrared enhancement in reducible diagrams.

$$
\begin{aligned}
& \frac{1}{E_{N N}-E_{\Psi}}=\frac{m_{N}}{\vec{p}^{2}-\vec{q}^{2}} \sim \frac{m_{N}}{Q^{2}} \gg \frac{1}{Q} \quad \frac{1}{E_{N N}-E_{\Psi}} \sim \frac{1}{M_{\pi}} \sim \frac{1}{Q}
\end{aligned}
$$

Weinberg's approach

- Irreducible contributions can be calculated using ChPT
- Reducible contributions enhanced and should be resummed

Two nucleons a la Weinberg

$V_{\text {cont }}, V_{\pi}$ grow with increasing momenta \Rightarrow LS equation must be regularized \& renormalized

$$
T(\vec{p}, \vec{k})=\left[V_{\text {cont }}(\vec{p}, \vec{k})+V_{\pi}(\vec{p}, \vec{k})\right]+\int \frac{d^{3} q}{(2 \pi)^{3}}\left[V_{\text {cont }}(\vec{p}, \vec{q})+V_{\pi}(\vec{p}, \vec{q})\right] \frac{m}{k^{2}-q^{2}+i \epsilon} T(\vec{q}, \vec{k})
$$

Complication: iterations of V generate UV divergences in T of a higher dimension which cannot be absorbed into $\mathrm{V}_{\text {cont, }}$, need infinitely many counter terms even at LO (OPEP)

Static OPEP in coordinate space:

$$
\left.\left.\begin{array}{r}
V_{1 \pi}(\vec{r})=\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}[M_{\pi}^{2} \frac{e^{-M_{\pi} r}}{12 \pi r}(S_{12}(\hat{r})(1+\frac{3}{M_{\pi} r}+\underbrace{\left(M_{\pi} r\right)^{2}}_{\text {singular potential in all } \mathrm{S}=1})
\end{array} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)-\frac{3}{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \delta^{3}(r)\right]
$$

O need counter terms in all spin-triplet partial waves
O infinite number of counter terms needed even in a given channel

Two nucleons a la Weinberg

Inconsistency issue (?) of Weinberg's approach Kaplan, Savage, Wise '97

Consider iterations of the LO potential $V_{\mathrm{LO}}=V_{1 \pi}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$ in the LS equation

$$
T=V+\int V G_{0} V+\iint V G_{0} V G_{0} V+\ldots \quad \text { where } \quad G_{0}=\frac{m}{\vec{p}^{2}-\vec{l}^{2}+i \epsilon}
$$

The 2 n -th iteration will generally produce (among other) overall Log-divergences $\times\left(Q m_{N}\right)^{2 n}$ where $Q \in\left\{|\vec{p}|, M_{\pi}\right\}$ (in spin-singlet channels no powers of $|\vec{p}|$ can appear)

$$
\propto \frac{1}{d-4} \frac{g_{A}^{2} C^{2}}{256 \pi^{2} F^{2}} m_{N}^{2} M_{\pi}^{2}
$$

\rightarrow must include: $D_{0} M_{\pi}^{2}=\left[\delta D_{0}+D\left(\mu_{0}\right)+\frac{g_{A}^{2} C^{2}}{256 \pi^{2} F^{2}} m_{N}^{2} \ln \left(\frac{\mu}{\mu_{0}}\right)\right] M_{\pi}^{2}$

$$
m_{N} M_{\pi} \sim Q^{0} \longrightarrow \text { must be resummed... }
$$

$$
D_{0}^{r}(\mu)
$$

$\propto \frac{1}{d-4} \vec{p}^{6} m_{N}^{6}$ (spin-triplet) \longrightarrow even more serious...

However, numerical estimations show no enhancement of renormalized higher-order counter terms Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079

Two nucleons a la Weinberg

How to renormalize the Schrödinger equation Lepage, nucl-th/9697929

1. Introduce a finite cutoff $M_{\pi} \ll \Lambda \sim \Lambda_{\text {hard }}$

All symmetries can be preserved Slavnov '71; Djukanovic et al.'05, Hall, Pascalutsa '12
2. Tune $C_{i}(\Lambda)$ to low-energy observables \longleftarrow (implicit) renormalization
3. Check self-consistency by means of error-plots (Lepage-plots)

Predictive power easily understood in terms of Modified Effective Range Theory...

How not to renormalize the Schrödinger equation: an infinite cutoff limit

Removing Λ by taking the limit $\Lambda \rightarrow \infty$ may yield finite results for the amplitude but does not qualify for a consistent renormalization in the EFT sense. It is only justified if all necessary counterterms are included... EE, Gegelia, EPJA 41 (2009) 341

$$
T=\frac{\alpha_{1}+\alpha_{2} \Lambda+\alpha_{3} \Lambda^{2}}{\beta_{1}+\beta_{2} \Lambda+\beta_{3} \Lambda^{2}} \quad \begin{cases}\xrightarrow{\Lambda \rightarrow \infty} & T=\frac{\alpha_{3}}{\beta_{3}} \\ \xrightarrow{\text { renormalization }} T=\frac{\alpha_{1}+\alpha_{2} \mu+\alpha_{3} \mu^{2}}{\beta_{1}+\beta_{2} \mu+\beta_{3} \mu^{2}}\end{cases}
$$

Two nucleons à la Weinberg

Nuclear EFT with nonperturbative pions: Current strategies

- Solve the A-body Schrödinger equation for chiral potentials regularized with a finite cutoff
- If the cutoff is to be removed, higher-order corrections to the potential must be treated in perturbation theory Pavon Valderrama '10,'11; Long, Yang '12
This is, however, insufficient since already the LO LS equation is not renormalizable...

The quest
An approach as efficient as Weinberg's (i.e. nonperturbative pions) with renormalization as transparent as in KSW

The idea

The linearly divergent UV behavior of the LO LS equation (and thus the inconsistency issue of Weinberg's approach) is not fundamental. Refraining from HB/NR expansion of the propagators (analogously to EOMS baryon ChPT in the 1 N sector) naturally leads to a renormalizable LO equation.

Baryon ChPT

Relativistic Baryon ChPT:

The problem: nucleon mass (hard scale) in the propagators spoils the power counting...

scaling according to NDA: $\sim Q^{3}$

Solutions:

- heavy-baryon expansion Jenkins, Manohar '91, Bernard et al. '92
- IR approach Ellis, Tang; Becher, Leutwyler '99
- EOMS: standard covariant + DR + finite subtractions Gegelia, Japaridze'99; Fuchs et al.'03
(based on the observation that terms violating PC are always analytic in soft scales)

$$
\begin{aligned}
m_{N} & =m-4 c_{1}^{r} M^{2}+\frac{3 g_{A}^{2} m}{32 \pi^{2} F^{2}} M^{2}-\frac{3 g_{A}^{2}}{128 \pi^{2} F^{2}} M^{3}+\mathcal{O}\left(M^{4}\right) \quad \longleftarrow \quad \tilde{\mathrm{Ms}}, \text { Gasser et al.'88 } \\
& \rightarrow m-4 c_{1}^{r \prime} M^{2}-\frac{3 g_{A}^{2}}{128 \pi^{2} F^{2}} M^{3}+\mathcal{O}\left(M^{4}\right) \quad \longleftarrow \quad \text { after additional subtraction (EOMS) }
\end{aligned}
$$

NN scattering revisited

use manifestly Lorentz-invariant Lagrangian, decompose the fermion propagator as

$$
\frac{\not p+m}{p^{2}-m^{2}+i \epsilon}=\frac{2 m P_{+}+(\not p-m \not p)}{p^{2}-m^{2}+i \epsilon}=\underbrace{\frac{2 m P_{+}}{p^{2}-m^{2}+i \epsilon}}_{\text {include nonperturbatively }}+\underbrace{\ldots}_{\text {treat as correction }}
$$

- resum the LO contact interactions + (static) OPEP

The LO equation (for details on the derivation see Djukanovic et al., Few Body Syst. 41 (2007) 141)

$$
T_{0}\left(\vec{p}^{\prime}, \vec{p}\right)=V_{0}\left(\vec{p}^{\prime}, \vec{p}\right)-\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} V_{0}\left(\vec{p}^{\prime}, \vec{k}\right) \underbrace{\frac{m^{2}}{2\left(\vec{k}^{2}+m^{2}\right)\left(p_{0}-\sqrt{\vec{k}^{2}+m^{2}}+i \epsilon\right)}}_{\text {reduces to the usual } \frac{m}{\left(\vec{p}^{2}-\vec{k}^{2}+i \epsilon\right)}} T_{0}(\vec{k}, \vec{p})
$$

- well-known equation Kadyshevsky '68
- by no means unique: many similar EQs emerge from 3-dim reduction of the Bethe-Salpeter EQ maintaining the same unitarity cut Blankenbecler-Sugar, Gross, ...

NN scattering revisited

1/m-expansion

Consider the loop integral which enters the bubble diagram

$$
\begin{aligned}
I & =\frac{1}{(2 \pi)^{3}} \int d^{3} \vec{k} \theta(\Lambda-|\vec{k}|) \frac{1}{\left[\vec{k}^{2}+m^{2}\right]\left[p_{0}-\sqrt{\vec{k}^{2}+m^{2}}+i 0^{+}\right]} \\
& =\frac{1}{4 \pi^{2} \sqrt{m^{2}+p^{2}}}\left[p \ln \frac{\Lambda \sqrt{m^{2}+p^{2}}+p \sqrt{\Lambda^{2}+m^{2}}}{\Lambda \sqrt{\Lambda^{2}+m^{2}}-p \sqrt{m^{2}+p^{2}}}-2 \sqrt{m^{2}+p^{2}} \ln \frac{\Lambda+\sqrt{\Lambda^{2}+m^{2}}}{m}+2 p \tanh ^{-1} \frac{p}{\Lambda}-m \tan ^{-1} \frac{\Lambda}{m}-2 \pi i p\right]
\end{aligned}
$$

- Expand in \wedge (first) and then in $1 / \mathrm{m}$

$$
I=\frac{1}{4 \pi^{2}}\left[-\frac{2 i \pi p}{m}-2 \ln \frac{\Lambda}{m}-m^{2}(\pi+\ln 4)+\mathcal{O}\left(\frac{1}{m^{2}}, \frac{1}{\Lambda}\right)\right]
$$

- NR (HB) approach: first expand in $1 / \mathrm{m}$ and then in Λ

$$
I=\frac{1}{4 \pi^{2}}\left[-\frac{2 i \pi p}{m}-\frac{4 \Lambda}{m}+\mathcal{O}\left(\frac{1}{m^{2}}, \frac{1}{\Lambda}\right)\right]
$$

- same low-energy physics; different UV behavior compensated by the counter terms
- perfectly fine in perturbative setting (where NDA is applicable as in ChPT)
- an infinite number of counter terms will have to be included when resumming OPEP

NN scattering revisited: perturbative pions (KSW) at NLO

KSW approach revisited

Expansion of the amplitude:

 ... $=$ ± 0

$$
\mathcal{A}=\mathcal{A}_{-1}+\mathcal{A}_{0}+\mathcal{A}_{1}+\cdots
$$

LO amplitude: $\quad \mathcal{A}_{-1}=\frac{-C}{1-C I(p)}=\frac{-C_{R}(\nu)}{1-C_{R}(\nu) I_{\mathrm{R}}(p, \nu)}$

The loop integral $\mathrm{I}(\mathrm{p})$ can equally well be computed in DR:

$$
\begin{gathered}
I(p) \stackrel{\mathrm{DR}}{=}-\frac{\bar{\lambda} m_{N}^{2}}{8 \pi^{2}}+\frac{m_{N}^{2} \ln \frac{m_{N}}{\mu}}{4 \pi^{2}}-\frac{m_{N}^{3}+2 i p m_{N}^{2}}{8 \pi \sqrt{m_{N}^{2}+p^{2}}}+\frac{p m_{N}^{2} \sinh ^{-1}\left(\frac{p}{m_{N}}\right)}{4 \pi^{2} \sqrt{m_{N}^{2}+p^{2}}}-\frac{m_{N}^{2}}{4 \pi^{2}} \\
\text { with } \bar{\lambda}=-\frac{1}{n-3}-\gamma-\ln (4 \pi) \quad \text { same as }
\end{gathered}
$$

NDA scaling: $I(p) \sim m_{N} Q \rightarrow$ just $\overline{\mathrm{MS}}$ would be insufficient...
Renormalize by subtraction: $I_{\mathrm{R}}(p, \nu)=I(p)-I(i \nu)=-\frac{m(\nu+i p)}{4 \pi}+\mathcal{O}\left(p^{2}, \nu^{2}\right)$
\rightarrow proper scaling after renormalization!

KSW approach revisited

Subleading contributions:

$$
\mathcal{A}_{0}^{(I)}=-\mathcal{A}_{-1}^{2}\left[\frac{C_{2 R} m_{N}^{2}\left(2 m_{N}^{2}+p^{2}-2 m_{N} \sqrt{m_{N}^{2}+p^{2}}\right)}{8 \pi C_{R}}-\frac{2 C_{2 R} p^{2}}{C_{R}^{2}}\right]
$$

$$
\begin{aligned}
& { }^{A_{0}^{(I I)}} \xrightarrow{\rightarrow} \\
& \rightarrow
\end{aligned}
$$

$$
\mathcal{A}_{0}^{(I I)}=\frac{g_{A}^{2}}{4 F^{2}}\left(-1+\frac{M^{2}}{4 p^{2}} \ln \frac{M^{2}+4 p^{2}}{M^{2}}\right) \longleftarrow \quad \text { same as in NR KSW }
$$

$$
\mathcal{A}_{0}^{(I I I)}=\frac{g_{A}^{2}}{2 F^{2}} \mathcal{A}_{-1}\left[I_{R}(p, \nu)-M^{2} I_{1 \mathrm{loop}}\right]
$$

same as in NR KSW up to higher-order ($1 / \mathrm{m}^{2}$) terms in A_{-1}, I_{R} and $I_{1 \text { loop }}$
where the 1-loop integral is given by:

$$
\begin{aligned}
I_{\text {lloop }} & =\frac{m_{N}^{2}}{2} \int \frac{d^{n} k}{(2 \pi)^{n}} \frac{1}{\left[k^{2}+m_{N}^{2}\right]\left[p_{0}-\sqrt{k^{2}+m_{N}^{2}}+i \epsilon\right]\left[(k-p)^{2}+M^{2}\right]} \\
& =-\frac{m_{N}}{8 \pi p}\left[\tan ^{-1}\left(\frac{2 p}{M}\right)+\frac{i}{2} \ln \frac{M^{2}+4 p^{2}}{M^{2}}\right]+\mathcal{O}(p, M),
\end{aligned}
$$

KSW approach revisited

$$
\mathcal{A}_{0}^{(V)}=-\frac{D_{2 R} M^{2}}{C_{R}(\nu)^{2}} \mathcal{A}_{-1}^{2}
$$

$\longleftarrow \quad$ same as in NR KSW modulo higher-order ($1 / \mathrm{m}^{2}$) terms in A_{-1}

$$
\mathcal{A}_{0}^{(I V)}=\frac{g_{A}^{2}}{4 F^{2}} \mathcal{A}_{-1}^{2}\left[M^{2} I_{2 \text { loop }}-I_{R}(p, \nu)^{2}\right] \quad \text { where: }
$$

$$
\begin{aligned}
I_{2 \text { loop }} & =\frac{m_{N}^{4}}{4} \int \frac{d^{n} k_{1} d^{n} k_{2}}{(2 \pi)^{2 n}} \frac{1}{\left[k_{1}^{2}+m_{N}^{2}\right]\left[p_{0}-\sqrt{k_{1}^{2}+m_{N}^{2}}+i \epsilon\right]} \frac{1}{\left[k_{2}^{2}+m_{N}^{2}\right]\left[p_{0}-\sqrt{k_{2}^{2}+m_{N}^{2}}+i \epsilon\right]\left[\left(k_{1}-k_{2}\right)^{2}+M^{2}\right]} \\
& =\frac{m_{N}^{2}}{16 \pi^{2}}\left[\frac{\ln 8}{4}-\frac{2 C}{\pi}-\frac{7 \zeta(3)}{2 \pi^{2}}-\frac{1}{2} \ln \frac{M^{2}+4 p^{2}}{m_{N}^{2}}+i \tan ^{-1}\left(\frac{2 p}{M}\right)\right]+\mathcal{O}(p, M)
\end{aligned}
$$

no need to promote $D_{2 R} M^{2}$ to LO when treating pions nonperturbatively! (no inconsistency issue)

$$
I_{2 \text { loop }}^{\mathrm{HB}, \mathrm{PDS}}=\frac{m_{N}^{2}}{16 \pi^{2}}\left[1-\frac{1}{2} \ln \frac{M^{2}+4 p^{2}}{\mu^{2}}+i \tan ^{-1}\left(\frac{2 p}{M}\right)\right]
$$

\square the difference is accounted for by a finite shift in $D_{2 R}$

To summarize, we recover exactly the results of NR KSW (modulo higher-order terms)

NN scattering revisited: nonperturbative pions (W) at LO

Weinberg's approach revisited

$$
\begin{gathered}
T_{0}\left(\vec{p}^{\prime}, \vec{p}\right)=V_{0}\left(\vec{p}^{\prime}, \vec{p}\right)-\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} V_{0}\left(\vec{p}^{\prime}, \vec{k}\right) \frac{m^{2}}{2\left(\vec{k}^{2}+m^{2}\right)\left(p_{0}-\sqrt{\vec{k}^{2}+m^{2}}+i \epsilon\right)} T_{0}(\vec{k}, \vec{p}) \\
\text { with: } V_{0}=-\frac{g_{A}^{2}}{4 F_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
\end{gathered}
$$

- only Log-divergences \longrightarrow LO Eq. perturbatively renormalizable (in the QFT sense):

$$
T_{0}=V_{0}-V_{0} G_{0} V_{0}+V_{0} G_{0} V_{0} G_{0} V_{0}-\ldots \quad \text { all } \mathrm{UV} \text { divergences absorbable in } C_{S}, C_{T}
$$

$$
\longrightarrow \text { it is safe to remove the cutoff: } \Lambda \rightarrow \infty
$$

- the only finite subtractions needed to maintain the power counting affect the values of $C_{S}, C_{T} \longrightarrow$ LO Eq. also renormalizable in the EFT sense
- nonperturbatively, the UV behavior is the same as for the Skorniakov-Ter-Martirosyan Eq. (Schröd. Eq. with $1 / \mathrm{r}^{2}$ potential in 2 spatial dimensions) \longrightarrow nonunique solutions may exist for strong-enough attractive cases (only ${ }^{3} \mathrm{P}_{0}$ in this particular scheme)

Weinberg's approach revisited

Cutoff-independent results for neutron-proton phase shifts at LO

The deuteron BE at LO is 2.15 MeV .

Low-energy theorems: KSW vs Weinberg

Predictions for coefficients in the ERE in the ${ }^{1} \mathrm{~S}_{0}$ channel

${ }^{1} S_{0}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW from Ref. [23]	fit	fit	-3.3	18	-108
LO Weinberg	fit	1.50	-1.9	$8.6(8)$	$-37(10)$
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

Predictions for coefficients in the ERE in the ${ }^{3} S_{1}$ channel

${ }^{3} S_{1}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW from Ref. [23]	fit	fit	-0.95	4.6	-25
LO Weinberg	fit	1.60	-0.05	$0.8(1)$	$-4(1)$
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

Summary \& outlook

New formulation of Weinberg's approach without employing the NR expansion

- LO equation renormalizable \longrightarrow cutoff can be safely removed
- no inconsistency issues
- (fairly) good agreement with the data at LO

Some benefits of the new formulation

- transparent renormalization, no $1 / \Lambda$ artifacts, partial resummation of $1 / \mathrm{m}$ terms

To avoid any misunderstanding:

- Nothing conceptually wrong with the original W . approach (if \wedge is kept finite)
- The obtained LO equation/amplitude is by no means unique
- I made no fundamental statements about PC (finite parts of contact terms)
- No implications for PC in the original W. approach

Work in progress \& outlook

- higher-order corrections, chiral extrapolations, external probes, ...

Spares...

Effective Range Expansion

Nonrelativistic nucleon-nucleon scattering (uncoupled case):
$S_{l}(k)=e^{2 i \delta_{l}(k)}=1+i \frac{m k}{2 \pi} T_{l}(k)$ where $T_{l}(k)=\frac{4 \pi}{m} \frac{k^{2 l}}{F_{l}(k)-i k^{2 l+1}} \quad$ and $\quad F_{l}(k) \equiv k^{2 l+1} \cot \delta_{l}(k)$
If $V(r)$ satisfies certain conditions, F_{l} is a meromorphic function of k^{2} near the origin

\rightarrow effective range expansion (ERE):

$$
F_{l}\left(k^{2}\right)=-\frac{1}{a}+\frac{1}{2} r k^{2}+v_{2} k^{4}+v_{3} k^{6}+v_{4} k^{8}+\ldots
$$

The analyticity domain depends on the range M^{-1} of $V(r)$ defined as

$$
M=\min (\mu) \text { such that } \int_{R>0}^{\infty}|V(r)| e^{\mu r} d r=\infty \quad \text { (for strongly interacting nucleons } M=M_{\pi} \text {) }
$$

2N beyond ERE: Low-Energy Theorems

Both ERE \& $\not x$-EFT provide an expansion of NN observables in powers of k / M_{π}, have the same validity range and incorporate the same physics

$$
\Rightarrow \text { ERE } \sim \not \hbar \text {-EFT }
$$

Beyond π-less EFT: higher energies, LETs...
Two-range potential $V(r)=V_{L}(r)+V_{S}(r), M_{L}^{-1} \gg M_{H}^{-1}$$F_{l}\left(k^{2}\right)$ is meromorphic in $|k|<M_{L} / 2$

$$
F_{l}^{M}\left(k^{2}\right) \equiv M_{l}^{L}(k)+\frac{k^{2 l+1}}{\left|f_{l}^{L}(k)\right|^{2}} \cot \left[\delta_{l}(k)-\delta_{l}^{L}(k)\right]
$$

\longleftarrow modified effective range function Haeringen, Kok '82

$$
\underbrace{f_{l}^{L}(k)}=\lim _{r \rightarrow 0}(\frac{l!}{(2 l)!}(-2 i k r)^{l} \underbrace{f_{l}^{L}(k, r)})
$$

Jost function for $V_{L}(r)$

$$
\text { Jost solution for } V_{L}(r)
$$

$$
M_{l}^{L}(k)=\operatorname{Re}\left[\frac{(-i k / 2)^{l}}{l!} \lim _{r \rightarrow 0}\left(\frac{d^{2 l+1}}{d r^{2 l+1}} \frac{r^{l} f_{l}^{L}(k, r)}{f_{l}^{L}(k)}\right)\right]
$$

Per construction, F_{l}^{M} reduces to F_{l} for $V_{L}=0$ and is meromorphic in $|k|<M_{H} / 2$

2N beyond ERE: Low-Energy Theorems

Example: proton-proton scattering

$$
\begin{gathered}
F_{C}\left(k^{2}\right)=C_{0}^{2}(\eta) k \cot \left[\delta(k)-\delta^{C}(k)\right]+2 k \eta h(\eta)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+\ldots \\
\text { where } \underbrace{\delta^{C} \equiv \arg \Gamma(1+i \eta)}_{\text {Coulomb phase shift }}, \eta=\frac{m}{2 k} \alpha, \underbrace{C_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}}_{\text {Sommerfeld factor }}, h(\eta)=\operatorname{Re}[\underbrace{\Psi(\eta)}_{\text {Digamma function } \left.\Psi(z) \equiv \Gamma^{v}(z) / \Gamma(z)\right]-\ln (\eta)}
\end{gathered}
$$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen '99; Steele, Furnstahl '00

$$
F_{l} \equiv k^{2 l+1} \cot \delta_{l}=-\frac{1}{a}+\frac{1}{2} r k^{2}+v_{2} k^{4}+\ldots=\frac{A_{l} F_{l}^{L}-k^{4 l+2}}{A_{l}+F_{l}^{L}}
$$

depend on F_{i}^{M} and quantities calculable from $V_{L^{\prime}}$
where $F_{l}^{L}=k^{2 l+1} \cot \delta_{l}^{L}, A_{l}=\left(F_{l}^{M}+M_{l}^{L}\right)\left|f_{l}^{L}(k)\right|^{2}$
Compute $\delta_{l}^{L}(k), f_{l}^{L}(k), M_{l}^{L}(k)$ from V_{L} and use first n coefficients in the MERE as input

$$
F_{l}^{M}\left(k^{2}\right)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+v_{3}^{M} k^{6}+v_{4}^{M} k^{8}+\ldots
$$

\Rightarrow reproduce first n ERE coefficients and make predictions for all the higher ones (LETs)

Chirals toy model

The model: $\quad V(r)=V_{S}(r)+V_{L}(r), \quad V_{S, L}(r)=A_{S, L} \frac{\left(m_{S} r\right)^{2}}{1+\left(m_{S} r\right)^{2}} e^{-m_{S, L} r}$ "Chiral" expansion:

$$
V_{L}(r)=V_{L}^{(0)}(r)+V_{L}^{(2)}(r)+V_{L}^{(4)}(r)+\mathcal{O}\left(\left(m_{S} r\right)^{6}\right) \quad V_{L}^{(2 \nu)}(r)=\frac{(-1)^{\nu}}{\left(m_{S} r\right)^{2 \nu}} A_{L} e^{-m_{L} r}
$$

"Chiral" toy model

[^0]: * The answer is, in fact, known since > 6 decades: Effective Range Theory Blatt, Jackson '49; Bethe '49

