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 Pion-less EFT 
for two-nucleon scattering

Goal: E(F)T for NN scattering at typical CMS momenta * 
�
mNEB � Q � Mπ (1)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (2)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.
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with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (??) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result

IR(p, ν) = I(p)− I(i ν) = −m(ν + i p)

4π
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). (5)

The NLO correction to the amplitude consists of five contributions. First

we give the result of the two diagrams with NLO contact interaction vertex
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The answer is, in fact, known since > 6 decades:  Effective Range Theory* Blatt, Jackson ‘49; Bethe ’49

Effective Lagrangian (Heavy Baryon):  for                only zero-range interactions



Scattering amplitude (S-waves):

Natural case

~Q0 ~Q1 ~Q2

+

T1=

T0=

T2=

 Pionless EFT: natural scattering length

EFT expansion based on 
NDA for      , i. e.             , 
reproduces the ERE for T. 

�
d3l

m

p2 + l2 + i�
∼ mQ (1)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (2)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form

A−1 =
−C

1− C I(p)
=

−CR(ν)

1− CR(ν) IR(p, ν)
, (3)

where

I(p) =
m2

N

2

µ3−n

(2 π)n

� dnk

[k2 +m2
N ]

�
p0 −

�
k2 +m2

N + i 0+
�

= − λ̄m2
N

8π2
+

m2
N ln

mN
µ

4π2
− m3

N + 2i pm2
N

8π
�
m2

N + p2
+

pm2
N sinh

−1
�

p
mN

�

4π2
�
m2

N + p2
− m2

N

4π2
,

λ̄ = − 1

n− 3
− γ − ln(4π). (4)

with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (3) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result
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In reality:

Large scatt. length shallow (virtual) bound state           need to resum certain graphs
                                                       (fine tuning beyond NDA...) 

KSW approach for the case Kaplan, Savage & Wise ’97

Keep       fixed, count               :

~Q-1 ~Q0 ~Q1

DR + Power Divergence Subtraction:

Equivalent approaches 
(modulo higher-order terms)

NDA for Ci but m ~ 1/Q 

EFT with dibaryon fields: 
NDA for Ci and m ~ Q0 

Weinberg

Tarrus Castella, Soto

Pionless EFT: large scattering length



 
Chiral EFT 
for two-nucleon scattering

Goal: EFT for NN scattering at typical CMS momenta Q ∼ Mπ (1)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (2)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form
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with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (3) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result

IR(p, ν) = I(p)− I(i ν) = −m(ν + i p)

4π
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). (5)

The NLO correction to the amplitude consists of five contributions. First
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KSW: treat pion exchange in perturbation theory:

Weinberg: both LO contact terms & OPEP must be 
                     resummed: ≈

Q ∼ Mπ (1)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (2)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form

A−1 =
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1− C I(p)
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, (3)
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with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (3) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result

IR(p, ν) = I(p)− I(i ν) = −m(ν + i p)

4π
+O(p2, ν2

). (5)

The NLO correction to the amplitude consists of five contributions. First

we give the result of the two diagrams with NLO contact interaction vertex
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straightforward, consistent, but poor convergence...

phenomenologically successful but renormalization 
rather intransparent...



 KSW approach (perturbative pions)

Low Energy Theorems at NLO 

theory 

NPWA 

v2 (fm3) v3 (fm5) v4 (fm7) v2 (fm3) v3 (fm5) v4 (fm7)
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-0.5 3.8 -17. 

-0.95 4.6 -25. 

0.04 0.7 -4.0 

spin-singlet spin-triplet

v2 =
g2Am

16πF 2
π

�
− 16

3a2M4
π

+
32

5aM3
π

− 2

M2
π

�

v3 =
g2Am

16πF 2
π

�
− 16

3a2M6
π

− 128

7aM5
π

+
16

3M4
π

�

T = −4π

m

1

k cot δ − ik
=

4π

m

�
a− ia2k +

�
− a3 +

a2r0
2

�
k2 + . . .

�

∼
√
mMπ ∼ 400 MeV

� ∈
�
Mπ

Λχ
,

pi
Λχ

,
m∆ −mN

Λχ

�

1

LO

Nijmegen PSA

NLO

NNLO

it seems necessary to treat pions non-perturbatively at
see, however, Beane, Kaplan, Vuorinen, arXiv:0812.3938...

Higher-order calculations also show problems in S=1 channels 
Mehen, Stewart ’00
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Fig. 2. The leading and subleading contributions to the NN scattering amplitude in the
KSW approach. The solid dots denote the lowest-order contact operators and the leading
pion-nucleon vertex ∝ gA while the filled squares refer to the subleading contact terms
proportional to p2 orM2

π .

where the subscript indicates the power of the soft scale Q. The leading-order con-
tribution A−1 emerges from resummation of the LO contact interactions as shown
in Fig. 2. Using the two-nucleon Green function from Eq. (8), the LO amplitude
has the form

A−1 =
−C0

1− C0 I(p)
, (11)

where the dimensionally regularized (DR) integral I(p) is given in n spatial dimen-
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with the divergent quantity λ̄ defined as λ̄ ≡ −1/(n− 3)− γ− ln(4π) and µ being
the scale parameter of DR. Further, the (bare) LEC C0 is simply the properly nor-
malized linear combination of CS,T . Here and in what follows, we use the notation
p ≡ |$p |, k ≡ |$k |. Renormalization of A−1 is achieved by subtracting the loop
integral at p2 = −ν2 with ν chosen to be of order O(Q),
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Notice that while just using DR in combination with MS would be sufficient to
render the expressions finite, one additional finite subtraction would have to be
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Cohen, Hansen ’99



Perturbation theory fails due to infrared enhancement in reducible diagrams.

irreduciblereducible, enhanced

 Non-perturbative pions: Weinberg‘s 
approach

Irreducible contributions can be 
calculated  using ChPT
Reducible contributions enhanced 
and should be resummed

Weinberg‘s approach

~ 1 ~ m Q m ~ Λ2/Q >> Λ



,     grow with increasing momenta          LS equation must be regularized & renormalized

 Two nucleons à la Weinberg

Complication: iterations of V generate UV divergences in T of a higher dimension which cannot 
                       be absorbed into Vcont, need infinitely many counter terms even at LO (OPEP)         
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tensor operator:

singular potential in all S=1 channels
(solutions of the Schröd Eq. still exist in repulsive cases)

need counter terms in all spin-triplet partial waves

infinite number of  counter terms needed even in a given channel 



 Two nucleons à la Weinberg
Inconsistency issue (?) of  Weinberg‘s approach

(a) (b)

FIG. 1: Two examples of iterations of the LO equation.

with l, s,m, n = 1, 2. Note that the pseudoscalar piece of the leading-order NN Lagrangian

starts contributing at higher orders. The projected OPE potential has the following form,
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Standard ultraviolet (UV) counting shows that Eq. (10) has a milder UV behavior than

the corresponding LS equation, which corresponds to the leading-order term in the 1/m
expansion of the integrand in Eq. (10). Equation (10) is perturbatively renormalizable, i.e.
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diagrams require higher-order counter-terms of the second and sixth order (and higher-order
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generated by Eq. (10) are shown in Fig. 1 of this paper. They contain overall logarithmic

divergences, which do not depend on momenta or the pion mass and can be absorbed in the
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FIG. 1: Two examples of iterations of the LO equation.
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However, numerical estimations show no enhancement of renormalized higher-order counter 
terms Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079
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Kaplan, Savage, Wise ’97

Dr
0(µ) (1)

I(p) ∼ mNQ (2)

≈

Q ∼ Mπ (3)

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (4)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.
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λ̄ = − 1

n− 3
− γ − ln(4π). (6)

with n - the number of space-time dimensions and µ the scale parameter.

In Eq. (4) renormalization is performed by subtracting the loop integral at

p2 = −ν2 with the result

IR(p, ν) = I(p)− I(i ν) = −m(ν + i p)
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). (7)

The NLO correction to the amplitude consists of five contributions. First

we give the result of the two diagrams with NLO contact interaction vertex
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 Two nucleons à la Weinberg

How to renormalize the Schrödinger equation  Lepage, nucl-th/9697929

1. Introduce a finite cutoff                          
    All symmetries can be preserved Slavnov ’71; Djukanovic et al.’05, Hall, Pascalutsa ‘12
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2. Tune           to low-energy observables

3. Check self-consistency by means of error-plots (Lepage-plots)

(implicit) renormalization

Predictive power easily understood in terms of Modified Effective Range Theory...

Removing    by taking the limit                may yield finite results for the amplitude but 
does not qualify for a consistent renormalization in the EFT sense. It is only justified 
if all necessary counterterms are included... 
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renormalization

How not to renormalize the Schrödinger equation: an infinite cutoff  limit

EE, Gegelia, EPJA 41 (2009) 341



 Two nucleons à la Weinberg

Nuclear EFT with nonperturbative pions: Current strategies

The quest

Solve the A-body Schrödinger equation for chiral potentials regularized with a finite cutoff 

If the cutoff is to be removed, higher-order corrections to the potential must be treated in 
perturbation theory    Pavon Valderrama ’10,’11;  Long, Yang ’12
This is, however, insufficient since already the LO LS equation is not renormalizable...

An approach as efficient as Weinberg‘s (i.e. nonperturbative pions) with renormalization 
as transparent as in KSW

The linearly divergent UV behavior of the LO LS equation (and thus the inconsistency 
issue of Weinberg‘s approach) is not fundamental. Refraining from HB/NR expansion of 
the propagators (analogously to EOMS baryon ChPT in the 1N sector) naturally leads to 
a renormalizable LO equation. 

The idea



 Baryon ChPT

Solutions:

heavy-baryon expansion Jenkins, Manohar ’91, Bernard et al. ’92
IR approach Ellis, Tang;  Becher, Leutwyler ’99 
EOMS: standard covariant + DR + finite subtractions Gegelia, Japaridze’99; Fuchs et al.’03

The problem: nucleon mass (hard scale) in the propagators spoils the power counting...
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(based on the observation that terms violating PC are always analytic in soft scales)
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Relativistic Baryon ChPT:

scaling according to NDA: ~ Q3



 NN scattering revisited
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The LO equation (for details on the derivation see Djukanovic et al., Few Body Syst. 41 (2007) 141)

reduces to the usual                             in the nonrelativistic limit
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use manifestly Lorentz-invariant Lagrangian, decompose the fermion propagator as

resum the LO contact interactions + (static) OPEP
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well-known equation  Kadyshevsky ’68
by no means unique: many similar EQs emerge from 3-dim reduction of the Bethe-Salpeter 
EQ maintaining the same unitarity cut  Blankenbecler-Sugar, Gross, ...

include nonperturbatively      treat as correction



 
1/m-expansion

Consider the loop integral which enters the bubble diagram 

Expand in Λ (first) and then in 1/m 

NR (HB) approach: first expand in 1/m and then in Λ

3P0 partial wave a [fm3] r [fm−1] v2 [fm] v3 [fm3] v4 [fm5]

Weinberg fit 4.4 1.4 6.2(2) −20(5)
Nijmegen PWA −5.47 3.9 1.0(1) 3.8(1) −7.5(1)

3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

KSW fit fit −0.95 4.6 −25
Weinberg fit 1.62 −0.4 0.8 −4.5(5)

Nijmegen PWA −5.42 1.75 0.04 0.67 −4.0

I =
1

4π2

�
− 2ip

m
− 4Λ

m
+

4p2

Λm
+O

�
1

m2
,
1

Λ2

� �

I =
1

4π2

�
− 2iπp

m
+

2m

Λ
− 2 ln

Λ

m
−m2(π + ln 4) +

p2

mΛ
+O

�
1

Λ2
,
1

m2

� �

I =
1

(2π)3

�
d3�k θ(Λ− |�k|)

1
�
�k2 +m2

� �
p0 −

�
�k2 +m2 + i 0+

�

=
1

4π2
�
m2 + p2

�
p ln

Λ
�
m2 + p2 + p

√
Λ2 +m2

Λ
√
Λ2 +m2 − p

�
m2 + p2

− 2
�
m2 + p2 ln

Λ+
√
Λ2 +m2

m
+ 2p tanh−1 p

Λ
−m tan−1 Λ

m
− 2πip

�

T =
α1 + α2µ+ α3µ2

β1 + β2µ+ β3µ2

T =
α3

β3

T =
α1 + α2Λ+ α3Λ2

β1 + β2Λ+ β3Λ2

∝ 1

d− 4
�p 6 m6

N

D0M2
π =

�
δD0 +D(µ0) +

g2AC
2

256π2F 2
m2

N ln
�
µ

µ0

��
M2

π

1

3P0 partial wave a [fm3] r [fm−1] v2 [fm] v3 [fm3] v4 [fm5]

Weinberg fit 4.4 1.4 6.2(2) −20(5)
Nijmegen PWA −5.47 3.9 1.0(1) 3.8(1) −7.5(1)

3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

KSW fit fit −0.95 4.6 −25
Weinberg fit 1.62 −0.4 0.8 −4.5(5)

Nijmegen PWA −5.42 1.75 0.04 0.67 −4.0

I =
1

4π2

�
− 2ip

m
− 4Λ

m
+O

�
1

m2
,
1

Λ

� �

I =
1

4π2

�
− 2iπp

m
− 2 ln

Λ

m
−m2(π + ln 4) +O

�
1

m2
,
1

Λ

� �

I =
1

(2π)3

�
d3�k θ(Λ− |�k|)

1
�
�k2 +m2

� �
p0 −

�
�k2 +m2 + i 0+

�

=
1

4π2
�
m2 + p2

�
p ln

Λ
�
m2 + p2 + p

√
Λ2 +m2

Λ
√
Λ2 +m2 − p

�
m2 + p2

− 2
�
m2 + p2 ln

Λ+
√
Λ2 +m2

m
+ 2p tanh−1 p

Λ
−m tan−1 Λ

m
− 2πip

�

T =
α1 + α2µ+ α3µ2

β1 + β2µ+ β3µ2

T =
α3

β3

T =
α1 + α2Λ+ α3Λ2

β1 + β2Λ+ β3Λ2

∝ 1

d− 4
�p 6 m6

N

D0M2
π =

�
δD0 +D(µ0) +

g2AC
2

256π2F 2
m2

N ln
�
µ

µ0

��
M2

π

1

3P0 partial wave a [fm3] r [fm−1] v2 [fm] v3 [fm3] v4 [fm5]

Weinberg fit 4.4 1.4 6.2(2) −20(5)
Nijmegen PWA −5.47 3.9 1.0(1) 3.8(1) −7.5(1)

3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

KSW fit fit −0.95 4.6 −25
Weinberg fit 1.62 −0.4 0.8 −4.5(5)

Nijmegen PWA −5.42 1.75 0.04 0.67 −4.0

I =
1

4π2

�
− 2iπp

m
− 4Λ

m
+O

�
1

m2
,
1

Λ

� �

I =
1

4π2

�
− 2iπp

m
− 2 ln

Λ

m
−m2(π + ln 4) +O

�
1

m2
,
1

Λ

� �

I =
1

(2π)3

�
d3�k θ(Λ− |�k|)

1
�
�k2 +m2

� �
p0 −

�
�k2 +m2 + i 0+

�

=
1

4π2
�
m2 + p2

�
p ln

Λ
�
m2 + p2 + p

√
Λ2 +m2

Λ
√
Λ2 +m2 − p

�
m2 + p2

− 2
�
m2 + p2 ln

Λ+
√
Λ2 +m2

m
+ 2p tanh−1 p

Λ
−m tan−1 Λ

m
− 2πip

�

T =
α1 + α2µ+ α3µ2

β1 + β2µ+ β3µ2

T =
α3

β3

T =
α1 + α2Λ+ α3Λ2

β1 + β2Λ+ β3Λ2

∝ 1

d− 4
�p 6 m6

N

D0M2
π =

�
δD0 +D(µ0) +

g2AC
2

256π2F 2
m2

N ln
�
µ

µ0

��
M2

π

1

same low-energy physics; different UV behavior compensated by the counter terms
perfectly fine in perturbative setting (where NDA is applicable as in ChPT)
an infinite number of counter terms will have to be included when resumming OPEP

NN scattering revisited



 NN scattering revisited: 
perturbative pions (KSW) at NLO



 KSW approach revisited
In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (1)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form
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Expansion of the amplitude: 

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (1)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.
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with n - the number of space-time dimensions and µ the scale parameter.
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LO amplitude: 

The loop integral I(p) can equally well be computed in DR: 

In the KSW approach the scattering amplitude is calculated as an expan-

sion in small parameter

A = A−1 +A0 +A1 + · · · . (1)

Below we give the expressions of the perturbative amplitudes up to NLO.

They coincide with the corresponding results of the KSW approach up to

(small) higher order corrections.

The leading order amplitude has the form
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Fig. 2. The leading and subleading contributions to the NN scattering amplitude in the
KSW approach. The solid dots denote the lowest-order contact operators and the leading
pion-nucleon vertex ∝ gA while the filled squares refer to the subleading contact terms
proportional to p2 orM2

π .

where the subscript indicates the power of the soft scale Q. The leading-order con-
tribution A−1 emerges from resummation of the LO contact interactions as shown
in Fig. 2. Using the two-nucleon Green function from Eq. (8), the LO amplitude
has the form

A−1 =
−C0

1− C0 I(p)
, (11)

where the dimensionally regularized (DR) integral I(p) is given in n spatial dimen-
sions by

I(p)=
m2

2

µ3−n

(2 π)n

∫ dnk

[k2 +m2]
[

p0 −
√
k2 +m2 + i 0+

]

=
1

8π2

[

−
(

λ̄+ 2− 2 ln
m

µ

)

m2

−
m2

√
m2 + p2

(

πm+ 2iπp− 2p sinh−1
(

p

m

)

)]

+O(n− 3) , (12)

with the divergent quantity λ̄ defined as λ̄ ≡ −1/(n− 3)− γ− ln(4π) and µ being
the scale parameter of DR. Further, the (bare) LEC C0 is simply the properly nor-
malized linear combination of CS,T . Here and in what follows, we use the notation
p ≡ |$p |, k ≡ |$k |. Renormalization of A−1 is achieved by subtracting the loop
integral at p2 = −ν2 with ν chosen to be of order O(Q),

IR(p, ν) = I(p)− I(i ν) = −
m(ν + i p)

4π
+O(p2, ν2) , (13)

and replacing C0 by CR
0 (ν) which yields

A−1 =
−CR

0 (ν)

1− CR
0 (ν) IR(p, ν)

. (14)

Notice that while just using DR in combination with MS would be sufficient to
render the expressions finite, one additional finite subtraction would have to be
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Fig 2. The five sub-graphs contributing to A0 computed in eq. (15). The gray blob is defined
in Fig. 1, while the dashed line is the exchange of a potential pion.

exchange of one potential pion dressed by C0 to all orders (radiation pions do not contribute
at this order).

The expression for A0 is conveniently expressed as the sum of the five graphs shown in
Fig. 2; A(I)
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Note that A(IV )
0 has a logarithmic dependence on µ. Since m2

π is proportional to the light

quark masses we are required to include the vertex in A(V )
0 proportional to D2m2

π
3. We

have absorbed into A(V )
0 some of the finite, µ-independent, part of A(IV )

0 that arises in PDS
(e.g. the part involving Euler’s constant and a logarithm of 4π). In our power counting p, µ
and mπ are considered to be of the same order. Comparing A−1 with A0 indicates that the
expansion parameter is p/ΛNN where

ΛNN = (8πf 2/g2
AM) ∼ 300 MeV. (16)

3The presence of such a divergence [4] indicates that the power counting suggested by Weinberg
[1] is not consistent. The influence of this operator is not subdominant to one pion exchange when
C0 is treated to all orders. Its presence is needed to get a subtraction point independent amplitude.
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Note that A(IV )
0 has a logarithmic dependence on µ. Since m2

π is proportional to the light

quark masses we are required to include the vertex in A(V )
0 proportional to D2m2
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3. We

have absorbed into A(V )
0 some of the finite, µ-independent, part of A(IV )

0 that arises in PDS
(e.g. the part involving Euler’s constant and a logarithm of 4π). In our power counting p, µ
and mπ are considered to be of the same order. Comparing A−1 with A0 indicates that the
expansion parameter is p/ΛNN where

ΛNN = (8πf 2/g2
AM) ∼ 300 MeV. (16)

3The presence of such a divergence [4] indicates that the power counting suggested by Weinberg
[1] is not consistent. The influence of this operator is not subdominant to one pion exchange when
C0 is treated to all orders. Its presence is needed to get a subtraction point independent amplitude.
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Fig 2. The five sub-graphs contributing to A0 computed in eq. (15). The gray blob is defined
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3The presence of such a divergence [4] indicates that the power counting suggested by Weinberg
[1] is not consistent. The influence of this operator is not subdominant to one pion exchange when
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0 that arises in PDS
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and mπ are considered to be of the same order. Comparing A−1 with A0 indicates that the
expansion parameter is p/ΛNN where
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3The presence of such a divergence [4] indicates that the power counting suggested by Weinberg
[1] is not consistent. The influence of this operator is not subdominant to one pion exchange when
C0 is treated to all orders. Its presence is needed to get a subtraction point independent amplitude.
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Fig 2. The five sub-graphs contributing to A0 computed in eq. (15). The gray blob is defined
in Fig. 1, while the dashed line is the exchange of a potential pion.

exchange of one potential pion dressed by C0 to all orders (radiation pions do not contribute
at this order).

The expression for A0 is conveniently expressed as the sum of the five graphs shown in
Fig. 2; A(I)
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Note that A(IV )
0 has a logarithmic dependence on µ. Since m2

π is proportional to the light

quark masses we are required to include the vertex in A(V )
0 proportional to D2m2

π
3. We

have absorbed into A(V )
0 some of the finite, µ-independent, part of A(IV )

0 that arises in PDS
(e.g. the part involving Euler’s constant and a logarithm of 4π). In our power counting p, µ
and mπ are considered to be of the same order. Comparing A−1 with A0 indicates that the
expansion parameter is p/ΛNN where

ΛNN = (8πf 2/g2
AM) ∼ 300 MeV. (16)

3The presence of such a divergence [4] indicates that the power counting suggested by Weinberg
[1] is not consistent. The influence of this operator is not subdominant to one pion exchange when
C0 is treated to all orders. Its presence is needed to get a subtraction point independent amplitude.
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the difference is accounted for 
by a finite shift in D2R

no need to promote D2RM2 to LO when 
treating pions nonperturbatively!
(no inconsistency issue)

To summarize, we recover exactly the results of  NR KSW (modulo higher-order terms) 
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it is safe to remove the cutoff: Λ → ∞
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the only finite subtractions needed to maintain the power counting affect the 
values of                         LO Eq. also renormalizable in the EFT senseCS, CT
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nonperturbatively, the UV behavior is the same as for 
the Skorniakov-Ter-Martirosyan Eq. (Schröd. Eq. with 
1/r2 potential in 2 spatial dimensions)          nonunique 
solutions may exist for strong-enough attractive cases 
(only 3P0 in this particular scheme)  10 100 1000
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Fig. 3. 3P0 and 3P2 phase shifts at Elab = 100 MeV versus the cutoff Λ obtained from
equation (8) with the OPE potential.

4 Non-perturbative pions at leading order

We now turn to the case of nonperturbative pions and numerically solve Eq. (8)
in the partial wave basis for the LO potential given in Eq. (1). We employ a mo-
mentum-space cutoff Λ when integrating over k in order to regularize the divergent
integrals. As discussed in the previous sections, the LO equation (8) is perturba-
tively renormalizable so that one can safely remove the cutoff by taking the limit
Λ → ∞ in any iteration. Nonperturbatively, the UV behavior in Eq. (8) can be
understood by approximating the two-nucleon propagator for k → ∞ via

1

(k2 +m2)
(

p0 −
√
k2 +m2 + i ε

) =
p0 +

√
k2 +m2

(k2 +m2) (p2 − k2 + iε)

→
1

k (p2 − k2 + i ε)
. (21)

The UV behavior of this equation in the partial-wave decomposed form coincides
with the one of the LS equation in 2+1 space-time dimensions. The OPE part of the
potential therefore behaves in coordinate space for r → 0 as ∼ 1/r2 in 2+1 space-
time dimensions. It is well known that the LS equation does not possess a unique
solution if the strength of the attractive 1/r2 potential exceeds some critical value
which depends on the partial wave, see [34] for more details. The same sort of non-
uniqueness emerges in the context of the Skornyakov–Ter-Martirosyan equation
[35,36] which has also been addressed from the EFT point of view [37]. In the
case at hand, we found that the non-unique solutions only appear in the 3P0 partial
wave. This situation is visualized in Fig. 3 where we compare the dependence of
the 3P0 and 3P2 phase shifts on the UV cutoff Λ at the fixed energy of Elab =

10



 Weinberg‘s approach revisited

0

20

40

60

80

100

Ph
as

e 
Sh

ift
  [

de
g] 1S0

0

50

100

150 3S1

-30

-20

-10

0

Ph
as

e 
Sh

ift
  [

de
g] 1P1

-10

0

10 3P0

0 50 100 150 200 250
Lab. Energy  [MeV]

-30

-20

-10

0

Ph
as

e 
Sh

ift
  [

de
g] 3P1

0 50 100 150 200 250
Lab. Energy  [MeV]

0

10

20
3P2

0

2

4
6

8

10

12

Ph
as

e 
Sh

ift
  [

de
g] 1D2

-30

-20

-10

0
3D1

0

10

20

30

40

50

Ph
as

e 
Sh

ift
  [

de
g] 3D2

0

2

4

6 3D3

0 50 100 150 200 250
Lab. Energy  [MeV]

0

2

4

6

Ph
as

e 
Sh

ift
  [

de
g] !1

0 50 100 150 200 250
Lab. Energy  [MeV]

-6

-4

-2

0
!2

Fig. 4. Phase shifts calculated at LO in the modified Weinberg approach as functions of lab-
oratory energy in comparison with the Nijmegen [39] (filled circles) and Virginia Tech [40]
(open triangles) partial wave analyses. Left panel: S- and P-waves, right panel: D-waves
and the mixing angles ε1,2.

100 MeV. While the phase shift in the 3P2 channel quickly approaches the Λ →
∞ limit, the observed limit-cycle-like behavior of the 3P0 phase shift reflects the
non-uniqueness of solution of Eq. (8). While we still let the possibility open to fix
the solution from physical principles without the need to rely on the data, see the
discussion in Ref. [38], we follow here a more pragmatic approach of Ref. [37].
Specifically, we fix the solution in the 3P0 partial wave by including a counter term
of the form C3P0 p p′/Λ2 and tuning the LEC C3P0 to the Nijmegen partial wave
analysis (PWA). Notice that the residual Λ-dependence of C3P0 is of a logarithmic
type at any finite order in the loop expansion. Consequently, it is easy to see by
dimensional arguments that the iterations of this contact interaction do not require
the inclusion of higher-order counter terms. Therefore, the removed-cutoff limit is
indeed legitimate from the EFT point of view in this case, contrary to the situation
when positive powers of Λ appear in momentum-dependent counter terms [12]. A
more detailed analysis of this issue will be published elsewhere.

We are now in the position to discuss results for phase shifts. We employ the exact
isospin symmetry as appropriate at LO and use the following values for the LECs
entering the OPE potential

Mπ = 138 MeV, Fπ = 92.4 MeV, gA = 1.267 . (22)

The LECs CS , CT and C3P0 are fitted to Nijmegen 1S0, 3S1 and 3P0 phase shifts
at energies Elab < 25 MeV in the limit Λ → ∞. The resulting, cutoff-independent
predictions for phase shifts in S-, P - and D-waves and the mixing angles ε1,2 are
visualized in Fig. 4. Given that the calculations are carried out at LO, the agreement
with the Nijmegen PWA is rather good. The large deviation for the 1S0 phase shift

11

Cutoff-independent results for neutron-proton phase shifts at LO 

The deuteron BE at LO is 2.15 MeV.



 Low-energy theorems: KSW vs Weinberg

1S0 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

NLO KSW from Ref. [23] fit fit −3.3 18 −108

LO Weinberg fit 1.50 −1.9 8.6(8) −37(10)

Nijmegen PWA −23.7 2.67 −0.5 4.0 −20

Table 1
Predictions for the coefficients in the effective range expansion of the 1S0 phase shifts (low-
energy theorems) with perturbative and non-perturbative treatment of the OPE potential in
comparison with the values from the Nijmegen PWA (extracted using the Nijm II potential
[41,42]).

is also observed in LO KSW and (nonrelativistic) Weinberg approach and is well-
known to be largely cured by the inclusion of the subleading contact interaction.
In all other channels, the deviations between the theory and Nijmegen PWA are
consistent with the expected corrections from higher-order terms in the expansion
of the potential and also indicate that these corrections can be taken into account
perturbatively.

In addition to the predicted energy dependence of the phase shifts, the proper in-
clusion of the pion-exchange physics can be tested in theoretical predictions for the
coefficients in the effective range expansion

p2l+1 cot δl(p) = −
1

a
+

1

2
rp2 + v2p

4 + v3p
6 + v4p

8 + . . . , (23)

where a, r and vi denote the scattering length, effective range and shape parameters,
respectively, and l is the orbital angular momentum. The energy dependence of
the two-particle scattering amplitude near threshold is driven by the long-range
tail of the interaction which imposes correlations between the coefficients in the
effective range expansion [23]. These correlations are determined by the long-range
interaction and may be regarded as low-energy theorems (LETs). In tables 1 and
2, the LETs in the KSW and Weinberg approaches are confronted with the results
of the Nijmegen PWA for the 1S0 and 3S1 partial waves, respectively. Since in the
KSW approach the LO S-wave amplitude does not involve effects due to OPE,
one needs to go to at least NLO in order to test the LETs in this framework. The
analytic expressions for the S-wave shape parameters at NLO in the KSW scheme
can be found in Ref. [23]. Clearly, the modified version of the KSW approach
discussed in section 3 yields the same results for vi modulo terms of order 1/m
and higher. The LETs are known to be strongly violated in the KSW approach [23],
see tables 1 and 2. The non-perturbative treatment of the OPE potential leads to
an improved description of the LETs in the 1S0 channel. It is, however, still rather
poor at LO which should not come as a surprise given that the long-range part
of the OPE potential generates only a small contribution to the 1S0 phase shift.
One may, therefore, expect that the LETs are strongly affected by the two-pion
exchange contributions in this partial wave. In the 3S1 channel, in contrast, the
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3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

NLO KSW from Ref. [23] fit fit −0.95 4.6 −25

LO Weinberg fit 1.60 −0.05 0.8(1) −4(1)

Nijmegen PWA 5.42 1.75 0.04 0.67 −4.0

Table 2
Predictions for the coefficients in the effective range expansion of the 3S1 phase shifts (low-
energy theorems) with perturbative and non-perturbative treatment of the OPE potential in
comparison with the values from the Nijmegen PWA [43].

LETs are well reproduced at LO in the Weinberg approach. The discrepancy for
v2 in the 3S1 channel should not be taken too seriously given the very small value
of this coefficient. We further emphasize that the errors quoted for v3,4 refer to
the estimated uncertainty of our numerical extraction of these parameters from the
phase shifts.

5 Summary and conclusions

In this paper we applied the manifestly Lorentz-invariant form of the effective La-
grangian to the problem of nucleon-nucleon scattering without relying on the non-
relativistic expansion. The LO contribution to the scattering amplitude in the result-
ing modifiedWeinberg approach can be obtained by solving the LS-type of integral
equation (8) with the kernel given by the OPE potential and derivative-less contact
interactions. Contrary to its nonrelativistic counterpart, this equation is renormal-
izable, i.e. all UV divergences generated by its iterations can be absorbed by redef-
inition of the two LO contact interactions. The explicit appearance of the nucleon
mass in the propagators, however, makes it necessary to perform additional, finite
subtractions in order to restore the proper scaling of the renormalized contributions
in accordance with the power counting. Such additional subtractions only affect the
values of the LECs accompanying the LO contact interactions. Consequently, the
LO equation is renormalizable and consistent in the EFT sense.

In the case of perturbative pions, the new approach is shown to reproduce the
well-known results of the NR KSW framework modulo terms of a higher order in
the 1/m-expansion. When pions are treated non-perturbatively as suggested in the
Weinberg scheme, the formulation we propose, being renormalizable, offers the ap-
pealing possibility to remove the UV cutoff in the way compatible with the princi-
ples of EFT. We have analyzed two-nucleon scattering at LO in the modified Wein-
berg approach. We found that the integral equation does not possess a unique solu-
tion in the 3P0 partial wave similarly to the Skornyakov–Ter-Martirosyan equation
for spin-doublet nucleon-deuteron scattering. One possible way to fix the solution
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Predictions for coefficients in the ERE in the 1S0 channel

Predictions for coefficients in the ERE in the 3S1 channel



 Summary & outlook
New formulation of Weinberg‘s approach without employing the NR expansion

LO equation renormalizable           cutoff can be safely removed
no inconsistency issues
(fairly) good agreement with the data at LO

Work in progress & outlook 
        higher-order corrections, chiral extrapolations, external probes, ...

Some benefits of the new formulation
transparent renormalization, no 1/Λ artifacts, partial resummation of 1/m terms 

To avoid any misunderstanding:
Nothing conceptually wrong with the original W. approach (if Λ is kept finite)
The obtained LO equation/amplitude is by no means unique
I made no fundamental statements about PC (finite parts of contact terms)
No implications for PC in the original W. approach



 

Spares...



Nonrelativistic nucleon-nucleon scattering (uncoupled case): 

where and

effective-range function

If         satisfies certain conditions,     is a meromorphic function of     near the origin
          

effective range expansion (ERE):

The analyticity domain depends on the range         of         defined as 

such that

 Effective Range Expansion
Blatt, Jackson ’49;  Bethe ‘49 

(for strongly interacting nucleons              )M = Mπ

� ∈
�
Mπ

Λχ
,

pi
Λχ

,
m∆ −mN

Λχ

�

1



 2N beyond ERE: Low-Energy Theorems
Both ERE & π-EFT provide an expansion of NN 
observables in powers of          , have the same 
validity range and incorporate the same physics

ERE  ~ π-EFT

is meromorphic in

Two-range potential                                 ,  

modified effective range function

Jost function for Jost solution for 

Per construction,       reduces to     for 
and is meromorphic in 

Haeringen, Kok ’82

Beyond π-less EFT:  higher energies, LETs...



Example: proton-proton scattering

where                             ,                ,                            ,

Coulomb phase shift Sommerfeld factor Digamma function

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen ’99; Steele, Furnstahl ‘00

where                          ,
depend on       and quantities calculable from 

Compute                                  from      and use first    coefficients in the MERE as input  

reproduce first     ERE coefficients and make predictions for all the higher ones (LETs)

 2N beyond ERE: Low-Energy Theorems



 „Chiral“ toy model
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TABLE IV. Same as Table II but including the causality bounds, i.e. the a priori estimation for the unknown modified effective
theory parameters are now given by Eq. (51).

Wave αexp
0 rexp0 vexp2 vexp3 vexp4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave αLO
0 rLO

0 vLO
2 vLO

3 vLO
4

s 5.532/mL {2.377, 2.496}/mL {−0.1202, 0.2074}/m3
L {0.4491, 0.6398}/m5

L {−1.052,−0.958}/m7
L

p −16.22/m3
L {0.06368, 0.07136}mL {0.985, 1.024}/mL {−0.3740,−0.2593}/m3

L {0.549, 0.600}/m5
L

d −13.98/m5
L {1.068, 1.069}m3

L {0.7471, 0.7486}mL {0.9629, 0.9760}/mL {−0.22,−0.19}/m3
L

Wave αNLO
0 rNLO

0 vNLO
2 vNLO

3 vNLO
4

s 5.532/mL 2.465/mL {0.1144, 0.1187}/m3
L {0.5342, 0.5589}/m5

L {−1.090,−1.070}/m7
L

p −16.22/m3
L 0.06952mL {1.014, 1.014}/mL {−0.2956,−0.2926}/m3

L {0.562, 0.572}/m5
L

d −13.98/m5
L 1.069m3

L {0.7490, 0.7490}mL {0.9722, 0.9723}/mL {−0.21,−0.20}/m3
L

Wave αNNLO
0 rNNLO

0 vNNLO
2 vNNLO

3 vNNLO
4

s 5.532/mL 2.465/mL 0.1174/m3
L {0.5512, 0.5516}/m5

L {−1.079,−1.077}/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL {−0.2938,−0.2937}/m3

L {0.568, 0.568}/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL {0.9722, 0.9722}/mL {−0.21,−0.21}/m3
L
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FIG. 1. Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

expansion of the multiple Goldstone boson exchange between the nucleons is much more complicated than the “chiral
expansion” in the toy model. In particular, the expansion in Eq. (34) only mimics a part of the chiral expansion
of the two-pion exchange. Chiral expansion of various parameters such as e.g. the pion-nucleon coupling constant
and of the three and more pion exchange contributions has a different pattern which is not simulated in the model.
There is also evidence that the convergence radius of the expansion of the t-channel multiple scattering series [? ]
is significantly larger than the distance of ∼ 0.3 fm representing the convergence radius of the “chiral expansion” in
the toy model, see the right panel of Fig. 1. Thus, the scenario realized in the toy model regarding the separation of
scales is probably too optimistic compared to the actual chiral nuclear forces.
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TABLE III. Usual and modified effective range parameters for the two-potential toy model of Eq. (33) in units of the inverse
light/heavy mass scale. The usual parameters for the complete potentials are in units of the light mass scale, as they are
expected to be natural in these units, while the modified parameters and the usual parameters corresponding to the short range
piece of the potential (VS in Eq. (33)) are expressed in units of the heavy mass. The modified parameters are computed at the
finite cut-off raddi rc = 0.2/mL, 0.5/mL and 0.8/mL. The number in the parentheses indicates the numerical error.

Wave α0 r0 v2 v3 v4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave α0,M (rc = 0.2/mL) r0,M (0.2/mL) v2,M (0.2/mL) v3,M (0.2/mL) v4,M (0.2/mL)

s 1.674/mS −1.034/mS −0.4315/m3
S −0(5)/m5

S −

p 5.389/m3
S −3.604mS −0.8121(2)/mS −0.33(8)/m3

S −

d −1.794/m5
S −2.774m3

S −3.7(7)mS − −

Wave α0,M (rc = 0.5/mL) r0,M (0.5/mL) v2,M (0.5/mL) v3,M (0.5/mL) v4,M (0.5/mL)

s 1.646/mS −0.940/mS −0.6742/m3
S −0(5)/m5

S −

p 3.954/m3
S −3.499mS −0.7632(2)/mS −0.4(8)/m3

S −

d 6.022/m5
S −3.105m3

S −3.6(3)mS − −

Wave α0,M (rc = 0.8/mL) r0,M (0.8/mL) v2,M (0.8/mL) v3,M (0.8/mL) v4,M (0.8/mL)

s 1.533/mS −1.908/mS −2.068/m3
S −0.3(1.0)/m5

S −

p 3.855/m3
S −3.670mS −1.460/mS −1.5(1.0)/m3

S −

d 5.230/m5
S −2.981m3

S −3.5(3)mS − −

Wave α0,S r0,S v2,S v3,S v4,S

s 1.968/mS −0.4982/mS −0.8255/m3
S 0.1297/m5

S −0.01(3)/m7
S

p 5.454/m3
S −2.896mS −0.8420/mS −0.1322(3)/m3

S −0.240(8)/m5
S

d 7.536/m5
S −2.220m3

S −3.061mS −1.03(2)/mS −0.11(5)/m3
S

C. A toy nuclear force model with an expandable long-range interaction

As our main model, we choose a local two-range potential

V (r) = VS(r) + VL(r) , VS,L(r) = AS,L
(mSr)2

1 + (mSr)2
e−mS,Lr . (33)

The masses mL and mS are set to represent the corresponding scales in the nuclear force, namely mL = 200MeV
and mS = 750MeV. For the strengths we choose AL = −175MeV and AS = 1500MeV. With this set of parameters,
the potential generates an S-wave bound state at B " 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
in powers of mSr that converges at distances of the order of and larger than the inverse of the soft scale:

VL(r) = V (0)
L (r) + V (2)

L (r) + V (4)
L (r) +O((mSr)

6) , (34)

where the V (2ν)
L component is given by

V (2ν)
L (r) =

(−1)ν

(mSr)2ν
AL e−mLr . (35)

At short distances, the truncated approximation of the long-range force shows a singular, power-like behavior 1/r2ν

with higher-order terms being increasingly singular. These features agree qualitatively with the ones of potentials
derived in chiral effective field theory. Despite the qualitative similarity, it should be understood that the real chiral
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TABLE III. Usual and modified effective range parameters for the two-potential toy model of Eq. (33) in units of the inverse
light/heavy mass scale. The usual parameters for the complete potentials are in units of the light mass scale, as they are
expected to be natural in these units, while the modified parameters and the usual parameters corresponding to the short range
piece of the potential (VS in Eq. (33)) are expressed in units of the heavy mass. The modified parameters are computed at the
finite cut-off raddi rc = 0.2/mL, 0.5/mL and 0.8/mL. The number in the parentheses indicates the numerical error.

Wave α0 r0 v2 v3 v4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave α0,M (rc = 0.2/mL) r0,M (0.2/mL) v2,M (0.2/mL) v3,M (0.2/mL) v4,M (0.2/mL)

s 1.674/mS −1.034/mS −0.4315/m3
S −0(5)/m5

S −

p 5.389/m3
S −3.604mS −0.8121(2)/mS −0.33(8)/m3

S −

d −1.794/m5
S −2.774m3

S −3.7(7)mS − −

Wave α0,M (rc = 0.5/mL) r0,M (0.5/mL) v2,M (0.5/mL) v3,M (0.5/mL) v4,M (0.5/mL)

s 1.646/mS −0.940/mS −0.6742/m3
S −0(5)/m5

S −

p 3.954/m3
S −3.499mS −0.7632(2)/mS −0.4(8)/m3

S −

d 6.022/m5
S −3.105m3

S −3.6(3)mS − −

Wave α0,M (rc = 0.8/mL) r0,M (0.8/mL) v2,M (0.8/mL) v3,M (0.8/mL) v4,M (0.8/mL)

s 1.533/mS −1.908/mS −2.068/m3
S −0.3(1.0)/m5

S −

p 3.855/m3
S −3.670mS −1.460/mS −1.5(1.0)/m3

S −

d 5.230/m5
S −2.981m3

S −3.5(3)mS − −

Wave α0,S r0,S v2,S v3,S v4,S

s 1.968/mS −0.4982/mS −0.8255/m3
S 0.1297/m5

S −0.01(3)/m7
S

p 5.454/m3
S −2.896mS −0.8420/mS −0.1322(3)/m3

S −0.240(8)/m5
S

d 7.536/m5
S −2.220m3

S −3.061mS −1.03(2)/mS −0.11(5)/m3
S

C. A toy nuclear force model with an expandable long-range interaction

As our main model, we choose a local two-range potential

V (r) = VS(r) + VL(r) , VS,L(r) = AS,L
(mSr)2

1 + (mSr)2
e−mS,Lr . (33)

The masses mL and mS are set to represent the corresponding scales in the nuclear force, namely mL = 200MeV
and mS = 750MeV. For the strengths we choose AL = −175MeV and AS = 1500MeV. With this set of parameters,
the potential generates an S-wave bound state at B " 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.
We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin

quantum numbers.
As already pointed out before, the important feature of the model is that its long-range part admits an expansion

in powers of mSr that converges at distances of the order of and larger than the inverse of the soft scale:

VL(r) = V (0)
L (r) + V (2)

L (r) + V (4)
L (r) +O((mSr)

6) , (34)

where the V (2ν)
L component is given by

V (2ν)
L (r) =

(−1)ν

(mSr)2ν
AL e−mLr . (35)

At short distances, the truncated approximation of the long-range force shows a singular, power-like behavior 1/r2ν

with higher-order terms being increasingly singular. These features agree qualitatively with the ones of potentials
derived in chiral effective field theory. Despite the qualitative similarity, it should be understood that the real chiral

The model:

„Chiral“ expansion:
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TABLE III. Usual and modified effective range parameters for the two-potential toy model of Eq. (33) in units of the inverse
light/heavy mass scale. The usual parameters for the complete potentials are in units of the light mass scale, as they are
expected to be natural in these units, while the modified parameters and the usual parameters corresponding to the short range
piece of the potential (VS in Eq. (33)) are expressed in units of the heavy mass. The modified parameters are computed at the
finite cut-off raddi rc = 0.2/mL, 0.5/mL and 0.8/mL. The number in the parentheses indicates the numerical error.

Wave α0 r0 v2 v3 v4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave α0,M (rc = 0.2/mL) r0,M (0.2/mL) v2,M (0.2/mL) v3,M (0.2/mL) v4,M (0.2/mL)

s 1.674/mS −1.034/mS −0.4315/m3
S −0(5)/m5

S −

p 5.389/m3
S −3.604mS −0.8121(2)/mS −0.33(8)/m3

S −

d −1.794/m5
S −2.774m3

S −3.7(7)mS − −

Wave α0,M (rc = 0.5/mL) r0,M (0.5/mL) v2,M (0.5/mL) v3,M (0.5/mL) v4,M (0.5/mL)

s 1.646/mS −0.940/mS −0.6742/m3
S −0(5)/m5

S −

p 3.954/m3
S −3.499mS −0.7632(2)/mS −0.4(8)/m3

S −

d 6.022/m5
S −3.105m3

S −3.6(3)mS − −

Wave α0,M (rc = 0.8/mL) r0,M (0.8/mL) v2,M (0.8/mL) v3,M (0.8/mL) v4,M (0.8/mL)

s 1.533/mS −1.908/mS −2.068/m3
S −0.3(1.0)/m5

S −

p 3.855/m3
S −3.670mS −1.460/mS −1.5(1.0)/m3

S −

d 5.230/m5
S −2.981m3

S −3.5(3)mS − −

Wave α0,S r0,S v2,S v3,S v4,S

s 1.968/mS −0.4982/mS −0.8255/m3
S 0.1297/m5

S −0.01(3)/m7
S

p 5.454/m3
S −2.896mS −0.8420/mS −0.1322(3)/m3

S −0.240(8)/m5
S

d 7.536/m5
S −2.220m3

S −3.061mS −1.03(2)/mS −0.11(5)/m3
S

C. A toy nuclear force model with an expandable long-range interaction

As our main model, we choose a local two-range potential

V (r) = VS(r) + VL(r) , VS,L(r) = AS,L
(mSr)2

1 + (mSr)2
e−mS,Lr . (33)

The masses mL and mS are set to represent the corresponding scales in the nuclear force, namely mL = 200MeV
and mS = 750MeV. For the strengths we choose AL = −175MeV and AS = 1500MeV. With this set of parameters,
the potential generates an S-wave bound state at B " 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
in powers of mSr that converges at distances of the order of and larger than the inverse of the soft scale:

VL(r) = V (0)
L (r) + V (2)

L (r) + V (4)
L (r) +O((mSr)

6) , (34)

where the V (2ν)
L component is given by

V (2ν)
L (r) =

(−1)ν

(mSr)2ν
AL e−mLr . (35)

At short distances, the truncated approximation of the long-range force shows a singular, power-like behavior 1/r2ν

with higher-order terms being increasingly singular. These features agree qualitatively with the ones of potentials
derived in chiral effective field theory. Despite the qualitative similarity, it should be understood that the real chiral



 „Chiral“ toy model
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FIG. 4. (Color online) Phase shifts predictions within the MERE formalism for the toy model employed in this work. The
black solid line represents the full result, while the green, red and blue bands represent the LO, NLO and NNLO phase shifts
(including the uncertainty) respectively. In this case we have included information about the Wigner bound for the estimation
of the error bands, resulting in a clear improvement of the convergence properties of the “chiral” expansion. We have calculated
the phase shift predictions for the cut-off radii rc = 0.2/mL (upper panels), 0.5/mL (middle panels) and 0.8/mL (lower panels).

at the level of observable quantities. So far this important EFT feature has been rather elusive (in a strict sense) in
purely non-perturbative formulations such as the Weinberg counting.

We have applied the previous ideas in a toy model that shares many of the features of the real chiral expansion. We
have found that there is a clear power counting within this theory, which would have been far from evident without the
use of the MERE. The results are encouraging, and we hope to extend the results to real nucleon-nucleon scattering
in the near future. However the applications of this formalism are not limited to the problem of error estimations. A
further aspect is the possibility of a renewed understanding of the renormalization group analysis of Refs. [? ? ]. We
will also explore this line of research in an ensuing publication.


